我对python理解ML架构非常陌生。
我设计了一个场景,训练了我的模型,我的测试结果按预期工作。 我的测试数据中有大约5行 我的问题是..如果我想测试单个记录并获得预测我该怎么做? 当我用单一记录进行测试时,我得到以下错误
以下是我的代码示例和错误。请帮忙
import numpy as np
import pandas as pd
from sklearn.tree import DecisionTreeClassifier
dataset = pd.read_csv('MLData2.csv')
# Data:
#A 1 1
#A 1 1
#A 1 1
#A 2 1
#A 2 1
#B 3 3
#B 3 3
#B 3 3
#B 4 3
#B 5 3
#C 4 4
#C 1 4
#C 2 4
#C 3 4
X = dataset.iloc[:, :-1].values
y = dataset.iloc[:,2].values
#Encode data
from sklearn.preprocessing import LabelEncoder, OneHotEncoder
labelencoder_X = LabelEncoder()
X[:,0] = labelencoder_X.fit_transform(X[:,0])
X[:,1] = labelencoder_X.fit_transform(X[:,1])
#onehotencoder = OneHotEncoder(categorical_features = "all")
#X = onehotencoder.fit_transform(X).toarray()
#labelencoder_Y = LabelEncoder()
#y = labelencoder_Y.fit_transform(y)
#onehotencoder_y = OneHotEncoder(categorical_features = "all")
#y = np.reshape(y, (-1, 1))
#y = onehotencoder_y.fit_transform(y).toarray()
from sklearn.cross_validation import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size =
0.2, random_state = 42)
from sklearn.tree import DecisionTreeClassifier
classifier = DecisionTreeClassifier(criterion="entropy", random_state
= 42)
classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
sTest = np.reshape([0,3], (-1,1))
#I want to test model for inputs C 3, which should return 4. How to
test that?
y_pred1 = classifier.predict(sTest)
以下是收到的错误
ValueError: Number of features of the model must match the input. Model n_features is 2 and input n_features is 1
简而言之,我的输出应始终为1表示A,3表示B,4表示C(在我的场景中)
答案 0 :(得分:0)
错误说:
ValueError: Number of features of the model must match the input. Model n_features is 2 and input n_features is 1
这意味着您对模型的输入形状与预期的不同。
您的模型需要2D样本,即具有(n_samples, n_features)
的形状n_features=2
的numpy数组。在您的情况下,您想要测试单个样本,所以n_samples=1
。您需要传递np.array
形状(1, 2)
。
尝试:
sTest = np.reshape([0,3], (1, -1))