我只是从keras和机器学习开始。
我训练了一个模型来分类来自2个类的图像并使用localhost
保存它。这是我使用的代码:
model.save()
它以0.98的准确度成功训练,非常好。要在新图像上加载和测试此模型,我使用以下代码:
from keras.preprocessing.image import ImageDataGenerator
from keras.models import Sequential
from keras.layers import Conv2D, MaxPooling2D
from keras.layers import Activation, Dropout, Flatten, Dense
from keras import backend as K
# dimensions of our images.
img_width, img_height = 320, 240
train_data_dir = 'data/train'
validation_data_dir = 'data/validation'
nb_train_samples = 200 #total
nb_validation_samples = 10 # total
epochs = 6
batch_size = 10
if K.image_data_format() == 'channels_first':
input_shape = (3, img_width, img_height)
else:
input_shape = (img_width, img_height, 3)
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(64))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# this is the augmentation configuration we will use for training
train_datagen = ImageDataGenerator(
rescale=1. / 255,
shear_range=0.2,
zoom_range=0.2,
horizontal_flip=True)
# this is the augmentation configuration we will use for testing:
# only rescaling
test_datagen = ImageDataGenerator(rescale=1. / 255)
train_generator = train_datagen.flow_from_directory(
train_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
validation_generator = test_datagen.flow_from_directory(
validation_data_dir,
target_size=(img_width, img_height),
batch_size=batch_size,
class_mode='binary')
model.fit_generator(
train_generator,
steps_per_epoch=nb_train_samples // batch_size,
epochs=epochs,
validation_data=validation_generator,
validation_steps=5)
model.save('model.h5')
输出:
[[0]]
为什么不提供课程的实际名称以及为什么from keras.models import load_model
import cv2
import numpy as np
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
img = cv2.imread('test.jpg')
img = cv2.resize(img,(320,240))
img = np.reshape(img,[1,320,240,3])
classes = model.predict_classes(img)
print classes
?
提前致谢。
答案 0 :(得分:17)
如果有人仍在努力对图像进行预测,那么这里是加载已保存模型并进行预测的优化代码:
# Modify 'test1.jpg' and 'test2.jpg' to the images you want to predict on
from keras.models import load_model
from keras.preprocessing import image
import numpy as np
# dimensions of our images
img_width, img_height = 320, 240
# load the model we saved
model = load_model('model.h5')
model.compile(loss='binary_crossentropy',
optimizer='rmsprop',
metrics=['accuracy'])
# predicting images
img = image.load_img('test1.jpg', target_size=(img_width, img_height))
x = image.img_to_array(img)
x = np.expand_dims(x, axis=0)
images = np.vstack([x])
classes = model.predict_classes(images, batch_size=10)
print classes
# predicting multiple images at once
img = image.load_img('test2.jpg', target_size=(img_width, img_height))
y = image.img_to_array(img)
y = np.expand_dims(y, axis=0)
# pass the list of multiple images np.vstack()
images = np.vstack([x, y])
classes = model.predict_classes(images, batch_size=10)
# print the classes, the images belong to
print classes
print classes[0]
print classes[0][0]
答案 1 :(得分:12)
keras predict_classes(docs)输出一个numpy类预测。在您的模型案例中,最后一个(softmax)层激活的神经元指数。 [[0]]
表示您的模型预测您的测试数据为0级。(通常您将传递多个图像,结果将显示为[[0], [1], [1], [0]]
)
您必须将实际标签(例如'cancer', 'not cancer'
)转换为二进制编码(0
代表'癌症',1
代表'非癌症')进行二元分类。然后,您将[[0]]
的序列输出解释为具有类标签'cancer'
答案 2 :(得分:12)
您可以使用model.predict()
预测单个图片的类别,如下所示[doc]:
# load_model_sample.py
from keras.models import load_model
from keras.preprocessing import image
import matplotlib.pyplot as plt
import numpy as np
import os
def load_image(img_path, show=False):
img = image.load_img(img_path, target_size=(150, 150))
img_tensor = image.img_to_array(img) # (height, width, channels)
img_tensor = np.expand_dims(img_tensor, axis=0) # (1, height, width, channels), add a dimension because the model expects this shape: (batch_size, height, width, channels)
img_tensor /= 255. # imshow expects values in the range [0, 1]
if show:
plt.imshow(img_tensor[0])
plt.axis('off')
plt.show()
return img_tensor
if __name__ == "__main__":
# load model
model = load_model("model_aug.h5")
# image path
img_path = '/media/data/dogscats/test1/3867.jpg' # dog
#img_path = '/media/data/dogscats/test1/19.jpg' # cat
# load a single image
new_image = load_image(img_path)
# check prediction
pred = model.predict(new_image)
在此示例中,图像作为numpy
数组加载,形状为(1, height, width, channels)
。然后,我们将其加载到模型中并预测其类,作为[0,1]范围内的实际值返回(本例中为二进制分类)。
答案 3 :(得分:3)
那是因为你获得了与班级相关的数值。例如,如果您有两个类猫和狗,Keras会将它们与数值0和1相关联。要获得类及其相关数值之间的映射,您可以使用
>>> classes = train_generator.class_indices
>>> print(classes)
{'cats': 0, 'dogs': 1}
现在您知道了类和索引之间的映射。所以你现在可以做的是
if classes[0][0] == 1:
prediction = 'dog'
else:
prediction = 'cat'
答案 4 :(得分:0)
转发@ritiek的例子,我也是ML的初学者,也许这种格式化有助于查看名称而不仅仅是类号。
images = np.vstack([x, y])
prediction = model.predict(images)
print(prediction)
i = 1
for things in prediction:
if(things == 0):
print('%d.It is cancer'%(i))
else:
print('%d.Not cancer'%(i))
i = i + 1