我使用以下带有tensorflow后端的keras代码来分类dog和cat之间的区别。它不会预测800x800图像以上的任何图像。如何预测图像或调整图像大小以预测高清图像。
培训代码:
# Importing the Keras libraries and packages
from keras.models import Sequential
from keras.layers import Convolution2D
from keras.layers import MaxPooling2D
from keras.layers import Flatten
from keras.layers import Dense
from keras.preprocessing.image import load_img, img_to_array
from keras.models import model_from_json
from scipy.misc import imresize
# Initialising the CNN
classifier = Sequential()
# Step 1 - Convolution
classifier.add(Convolution2D(32, 3, 3, input_shape = (64, 64, 3), activation = 'relu'))
# Step 2 - Pooling
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Adding a second convolutional layer
classifier.add(Convolution2D(32, 3, 3, activation = 'relu'))
classifier.add(MaxPooling2D(pool_size = (2, 2)))
# Step 3 - Flattening
classifier.add(Flatten())
# Step 4 - Full connection
classifier.add(Dense(output_dim = 128, activation = 'relu'))
classifier.add(Dense(output_dim = 1, activation = 'sigmoid'))
# Compiling the CNN
classifier.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
# Part 2 - Fitting the CNN to the images
from keras.preprocessing.image import ImageDataGenerator
train_datagen = ImageDataGenerator(rescale = 1./255,
shear_range = 0.2,
zoom_range = 0.2,
horizontal_flip = True)
test_datagen = ImageDataGenerator(rescale = 1./255)
training_set = train_datagen.flow_from_directory('dataset/training_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
test_set = test_datagen.flow_from_directory('dataset/test_set',
target_size = (64, 64),
batch_size = 32,
class_mode = 'binary')
classifier.fit_generator(
training_set,
samples_per_epoch=80,
nb_epoch=100,
validation_data=test_set,
nb_val_samples=2000
)
print(training_set.class_indices)
预测代码:
from keras.models import model_from_json
json_file = open('model.json', 'r')
model_json = json_file.read()
json_file.close()
model = model_from_json(model_json)
# load weights into new model
model.load_weights("model.h5")
# evaluate loaded model on test data
model.compile(optimizer = 'adam', loss = 'binary_crossentropy', metrics = ['accuracy'])
import shutil
import matplotlib.pyplot as plt
import requests
url = raw_input("Please enter the image url/link")
response = requests.get(url, stream=True)
with open('test.jpg', 'wb') as out_file:
shutil.copyfileobj(response.raw, out_file)
from keras.preprocessing import image
import numpy as np
test = image.load_img('test.jpg')
test = image.img_to_array(test)
test = np.expand_dims(test, axis=0)
result = model.predict(test)
if result[0][0] == 1:
prediction = 'dog'
print prediction
else:
prediction = 'cat'
print prediction
答案 0 :(得分:2)
根据Keras文档,您只需使用以下命令指定目标大小:
test = image.load_img('test.jpg', target_size=(224, 224))
请参阅https://keras.io/applications/以获取示例。