Tensorflow:如何从训练模型中预测单个图像?

时间:2018-05-26 10:56:55

标签: tensorflow machine-learning softmax

我是tensorflow的新手,我正在尝试构建一个图像分类器。我已成功创建模型,我正在尝试在恢复模型后预测单个图像。我已经完成了各种教程(https://github.com/sankit1/cv-tricks.com/blob/master/Tensorflow-tutorials/tutorial-2-image-classifier/predict.py),但我无法在代码中找出feed-dict的内容。加载保存的模型后,我被困在预测功能上。有人可以帮助我并告诉我在加载保存模型中的所有变量后该怎么做?

这是列车功能,它返回参数并将它们保存在模型中。

def trainModel(train, test, learning_rate=0.0001, num_epochs=2, minibatch_size=32, graph_filename='costs'):
"""
Implements a three-layer tensorflow neural network: LINEAR->RELU->LINEAR->RELU->LINEAR->SOFTMAX.

Input:
    train : training set
    test : test set
    learning_rate : learning rate 
    num_epochs : number of epochs 
    minibatch_size : size of minibatch
    print_cost : True to print the cost every epoch

Returns:
    parameters : parameters learnt by the model
"""

    ops.reset_default_graph() #for rerunning the model without resetting tf vars

# input and output shapes
    (n_x, m) = train.images.T.shape
    n_y = train.labels.T.shape[0]

    costs = [] #var for storing the costs for later use

    # create placeholders
    X, Y = placeholderCreator(n_x, n_y)

    parameters = paramInitializer()

    # Forward propagation
    Z3 = forwardPropagation(X, parameters)
    # Cost function
    cost = costCalc(Z3, Y)
    #Backpropagation using adam optimizer
    optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost)
    # Initialize tf variables
    init = tf.global_variables_initializer()
    minibatch_size = 32
    # Start session to compute Tensorflow graph
    with tf.Session() as sess:
    # Run initialization
        sess.run(init)

        for epoch in range(num_epochs): # Training loop
            epoch_cost = 0.
            num_minibatches = int(m / minibatch_size)
            for i in range(num_minibatches):
                minibatch_X, minibatch_Y = train.next_batch(minibatch_size)  # Get next batch of training data and labels
                _, minibatch_cost = sess.run([optimizer, cost], feed_dict={X: minibatch_X.T, Y: minibatch_Y.T}) # Execute optimizer and cost function
                epoch_cost += minibatch_cost / num_minibatches # Update epoch cost

        saver = tf.train.Saver()
        # Save parameters
        parameters = sess.run(parameters)
        saver.save(sess, "~/trained-model.ckpt")
        return parameters

这是我预测的功能,我试图预测图像。我已将该图像转换为MNIST格式以便于使用(predicting_data)。我加载了我保存的模型,在第3层(最终输出)的输出上使用softmax函数。

def predict():

train = predicting_data.train
(n_x, m) = train.images.T.shape
n_y = train.labels.T.shape[0]
X, Y = placeholderCreator(n_x, n_y)
with tf.Session() as sess:
    new_saver = tf.train.import_meta_graph('~/trained-model.ckpt.meta')
    new_saver.restore(sess, '~/trained-model.ckpt')
    W1 = tf.get_default_graph().get_tensor_by_name('W1:0')
    b1 = tf.get_default_graph().get_tensor_by_name('b1:0')
    W2 = tf.get_default_graph().get_tensor_by_name('W2:0')
    b2 = tf.get_default_graph().get_tensor_by_name('b2:0')
    W3 = tf.get_default_graph().get_tensor_by_name('W3:0')
    b3 = tf.get_default_graph().get_tensor_by_name('b3:0')
    # forward propagation     
    Z1 = tf.add(tf.matmul(W1,X), b1)     
    A1 = tf.nn.relu(Z1)                  
    Z2 = tf.add(tf.matmul(W2,A1), b2)    
    A2 = tf.nn.relu(Z2)                  
    Z3 = tf.add(tf.matmul(W3,A2), b3) 
    y_pred = tf.nn.softmax(Z3) ####what to do after this????
    cost = sess.run(y_pred, feed_dict={X: train.images.T}) 

提前谢谢!

2 个答案:

答案 0 :(得分:0)

正如维杰在评论中所说:

您的predict部分不对,您需要使用get_tensor_by_name()功能从保存的图表中获取输入并预测张量,然后在sess.run

中使用它

如果你看一下this post,它就会遇到类似的问题并有一些代码示例。

答案 1 :(得分:0)

在您的代码中,您可以将1传递给next_batch方法,并仅获得一张图像。

minibatch_X, minibatch_Y = train.next_batch(1)