我正在尝试自己实现YOLOv2对象检测算法,只是为了了解算法的工作原理。当然,我会使用预先训练过的砝码来加快速度。我使用keras-yolo2存储库中的代码作为我自己的代码的基础,但我有一个关于代码如何与基础YOLO算法相关的问题。
据我所知 - 从高层来看 - YOLO(你只看一次)会:
SxS
网格。此后还会发生多个其他事情,包括非最大抑制等。
我正在查看上述存储库中的一些代码,试图找出作者如何将图像实际分解为SxS
网格,以便在单元格内执行对象分类。任何人都可以在下面的代码中看到该算法的位置。可能是我对tensorflow的了解不足,但我无法分辨下面代码中的实现方式。似乎对cell_x = tf.to_float(tf.reshape(tf.tile(tf.range(GRID_W), [GRID_H]), (1, GRID_H, GRID_W, 1, 1)))
的初始调用会将图像分解为单元格,但我不理解如何在不循环每个网格单元的情况下如何工作?我也不明白tf.reshape
和tf.tile
和tf.range
如何协同工作以将图片分解为单元格。
任何帮助都将不胜感激。
IMAGE_H, IMAGE_W = 416, 416
GRID_H, GRID_W = 13 , 13
BOX = 5
CLASS = len(LABELS)
CLASS_WEIGHTS = np.ones(CLASS, dtype='float32')
OBJ_THRESHOLD = 0.3#0.5
NMS_THRESHOLD = 0.3#0.45
ANCHORS = [0.57273, 0.677385, 1.87446, 2.06253, 3.33843, 5.47434, 7.88282, 3.52778, 9.77052, 9.16828]
NO_OBJECT_SCALE = 1.0
OBJECT_SCALE = 5.0
COORD_SCALE = 1.0
CLASS_SCALE = 1.0
BATCH_SIZE = 16
WARM_UP_BATCHES = 0
TRUE_BOX_BUFFER = 50
def custom_loss(y_true, y_pred):
mask_shape = tf.shape(y_true)[:4]
cell_x = tf.to_float(tf.reshape(tf.tile(tf.range(GRID_W), [GRID_H]), (1, GRID_H, GRID_W, 1, 1)))
cell_y = tf.transpose(cell_x, (0,2,1,3,4))
cell_grid = tf.tile(tf.concat([cell_x,cell_y], -1), [BATCH_SIZE, 1, 1, 5, 1])
coord_mask = tf.zeros(mask_shape)
conf_mask = tf.zeros(mask_shape)
class_mask = tf.zeros(mask_shape)
seen = tf.Variable(0.)
total_recall = tf.Variable(0.)
"""
Adjust prediction
"""
### adjust x and y
pred_box_xy = tf.sigmoid(y_pred[..., :2]) + cell_grid
### adjust w and h
pred_box_wh = tf.exp(y_pred[..., 2:4]) * np.reshape(ANCHORS, [1,1,1,BOX,2])
### adjust confidence
pred_box_conf = tf.sigmoid(y_pred[..., 4])
### adjust class probabilities
pred_box_class = y_pred[..., 5:]
"""
Adjust ground truth
"""
### adjust x and y
true_box_xy = y_true[..., 0:2] # relative position to the containing cell
### adjust w and h
true_box_wh = y_true[..., 2:4] # number of cells accross, horizontally and vertically
### adjust confidence
true_wh_half = true_box_wh / 2.
true_mins = true_box_xy - true_wh_half
true_maxes = true_box_xy + true_wh_half
pred_wh_half = pred_box_wh / 2.
pred_mins = pred_box_xy - pred_wh_half
pred_maxes = pred_box_xy + pred_wh_half
intersect_mins = tf.maximum(pred_mins, true_mins)
intersect_maxes = tf.minimum(pred_maxes, true_maxes)
intersect_wh = tf.maximum(intersect_maxes - intersect_mins, 0.)
intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]
true_areas = true_box_wh[..., 0] * true_box_wh[..., 1]
pred_areas = pred_box_wh[..., 0] * pred_box_wh[..., 1]
union_areas = pred_areas + true_areas - intersect_areas
iou_scores = tf.truediv(intersect_areas, union_areas)
true_box_conf = iou_scores * y_true[..., 4]
### adjust class probabilities
true_box_class = tf.argmax(y_true[..., 5:], -1)
"""
Determine the masks
"""
### coordinate mask: simply the position of the ground truth boxes (the predictors)
coord_mask = tf.expand_dims(y_true[..., 4], axis=-1) * COORD_SCALE
### confidence mask: penelize predictors + penalize boxes with low IOU
# penalize the confidence of the boxes, which have IOU with some ground truth box < 0.6
true_xy = true_boxes[..., 0:2]
true_wh = true_boxes[..., 2:4]
true_wh_half = true_wh / 2.
true_mins = true_xy - true_wh_half
true_maxes = true_xy + true_wh_half
pred_xy = tf.expand_dims(pred_box_xy, 4)
pred_wh = tf.expand_dims(pred_box_wh, 4)
pred_wh_half = pred_wh / 2.
pred_mins = pred_xy - pred_wh_half
pred_maxes = pred_xy + pred_wh_half
intersect_mins = tf.maximum(pred_mins, true_mins)
intersect_maxes = tf.minimum(pred_maxes, true_maxes)
intersect_wh = tf.maximum(intersect_maxes - intersect_mins, 0.)
intersect_areas = intersect_wh[..., 0] * intersect_wh[..., 1]
true_areas = true_wh[..., 0] * true_wh[..., 1]
pred_areas = pred_wh[..., 0] * pred_wh[..., 1]
union_areas = pred_areas + true_areas - intersect_areas
iou_scores = tf.truediv(intersect_areas, union_areas)
best_ious = tf.reduce_max(iou_scores, axis=4)
conf_mask = conf_mask + tf.to_float(best_ious < 0.6) * (1 - y_true[..., 4]) * NO_OBJECT_SCALE
# penalize the confidence of the boxes, which are reponsible for corresponding ground truth box
conf_mask = conf_mask + y_true[..., 4] * OBJECT_SCALE
### class mask: simply the position of the ground truth boxes (the predictors)
class_mask = y_true[..., 4] * tf.gather(CLASS_WEIGHTS, true_box_class) * CLASS_SCALE
"""
Warm-up training
"""
no_boxes_mask = tf.to_float(coord_mask < COORD_SCALE/2.)
seen = tf.assign_add(seen, 1.)
true_box_xy, true_box_wh, coord_mask = tf.cond(tf.less(seen, WARM_UP_BATCHES),
lambda: [true_box_xy + (0.5 + cell_grid) * no_boxes_mask,
true_box_wh + tf.ones_like(true_box_wh) * np.reshape(ANCHORS, [1,1,1,BOX,2]) * no_boxes_mask,
tf.ones_like(coord_mask)],
lambda: [true_box_xy,
true_box_wh,
coord_mask])
"""
Finalize the loss
"""
nb_coord_box = tf.reduce_sum(tf.to_float(coord_mask > 0.0))
nb_conf_box = tf.reduce_sum(tf.to_float(conf_mask > 0.0))
nb_class_box = tf.reduce_sum(tf.to_float(class_mask > 0.0))
loss_xy = tf.reduce_sum(tf.square(true_box_xy-pred_box_xy) * coord_mask) / (nb_coord_box + 1e-6) / 2.
loss_wh = tf.reduce_sum(tf.square(true_box_wh-pred_box_wh) * coord_mask) / (nb_coord_box + 1e-6) / 2.
loss_conf = tf.reduce_sum(tf.square(true_box_conf-pred_box_conf) * conf_mask) / (nb_conf_box + 1e-6) / 2.
loss_class = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=true_box_class, logits=pred_box_class)
loss_class = tf.reduce_sum(loss_class * class_mask) / (nb_class_box + 1e-6)
loss = loss_xy + loss_wh + loss_conf + loss_class
nb_true_box = tf.reduce_sum(y_true[..., 4])
nb_pred_box = tf.reduce_sum(tf.to_float(true_box_conf > 0.5) * tf.to_float(pred_box_conf > 0.3))
"""
Debugging code
"""
current_recall = nb_pred_box/(nb_true_box + 1e-6)
total_recall = tf.assign_add(total_recall, current_recall)
loss = tf.Print(loss, [tf.zeros((1))], message='Dummy Line \t', summarize=1000)
loss = tf.Print(loss, [loss_xy], message='Loss XY \t', summarize=1000)
loss = tf.Print(loss, [loss_wh], message='Loss WH \t', summarize=1000)
loss = tf.Print(loss, [loss_conf], message='Loss Conf \t', summarize=1000)
loss = tf.Print(loss, [loss_class], message='Loss Class \t', summarize=1000)
loss = tf.Print(loss, [loss], message='Total Loss \t', summarize=1000)
loss = tf.Print(loss, [current_recall], message='Current Recall \t', summarize=1000)
loss = tf.Print(loss, [total_recall/seen], message='Average Recall \t', summarize=1000)
return loss
答案 0 :(得分:2)
Yolo v2
不会将图像分解为13x13
网格,而是在网格级别而不是像素级别进行预测。
网络获取大小为416x416
的输入图像并输出13x13
个预测,每个预测都是一个包含类概率和框坐标的数组(425
大小向量,实际输出大小为13x13x425
)。因此,每个输出pixel
被视为输入图像中区域的预测。例如,输出的索引[2,3]
对应于输入图像区域(64,96,96,128)
的预测(425长度矢量)。
作为425长度向量的一部分的框坐标相对于cell_grid
进行编码。
代码中的cell_grid
只计算整批的mesh grid
大小13x13
,用于预测实际坐标,而不是其他任何内容。
cell_grid = tf.tile(tf.concat([cell_x,cell_y], -1), [BATCH_SIZE, 1, 1, 5, 1])