假设我有一个名为m
的网络模型对象。现在,我没有有关该网络具有的层数的先前信息。如何创建for循环在其层上进行迭代?
我正在寻找类似的东西:
Weight=[]
for layer in m._modules:
Weight.append(layer.weight)
答案 0 :(得分:2)
假设您具有以下神经网络。
import torch
import torch.nn as nn
import torch.nn.functional as F
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
# 1 input image channel, 6 output channels, 5x5 square convolution
# kernel
self.conv1 = nn.Conv2d(1, 6, 5)
self.conv2 = nn.Conv2d(6, 16, 5)
# an affine operation: y = Wx + b
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 10)
def forward(self, x):
# define the forward function
return x
现在,让我们打印与每个NN层关联的权重参数的大小。
model = Net()
for name, param in model.named_parameters():
print(name, param.size())
输出:
conv1.weight torch.Size([6, 1, 5, 5])
conv1.bias torch.Size([6])
conv2.weight torch.Size([16, 6, 5, 5])
conv2.bias torch.Size([16])
fc1.weight torch.Size([120, 400])
fc1.bias torch.Size([120])
fc2.weight torch.Size([84, 120])
fc2.bias torch.Size([84])
fc3.weight torch.Size([10, 84])
fc3.bias torch.Size([10])
我希望您可以扩展示例以满足您的需求。
答案 1 :(得分:2)
您可以简单地使用model.named_parameters()
来获取它,这将返回一个生成器,您可以对其进行迭代并获取张量,其名称等。
这是resnet预训练模型的代码:
In [106]: resnet = torchvision.models.resnet101(pretrained=True)
In [107]: for name, param in resnet.named_parameters():
...: print(name, param.shape)
将会输出
conv1.weight torch.Size([64, 3, 7, 7])
bn1.weight torch.Size([64])
bn1.bias torch.Size([64])
layer1.0.conv1.weight torch.Size([64, 64, 1, 1])
layer1.0.bn1.weight torch.Size([64])
layer1.0.bn1.bias torch.Size([64])
........
........ and so on
中找到有关此主题的一些讨论
答案 2 :(得分:2)
您可以使用 children
方法:
for module in model.children():
# ...
或者,如果您想flatten Sequential
layers:
for module in model.modules():
if not isinstance(module, nn.Sequential):
# ...
答案 3 :(得分:1)
您也可以这样做:
for name, m in mdl.named_children():
print(name)
print(m.parameters())
参考:
# https://discuss.pytorch.org/t/how-to-get-the-module-names-of-nn-sequential/39682
# looping through modules but get the one with a specific name
import torch
import torch.nn as nn
from collections import OrderedDict
params = OrderedDict([
('fc0', nn.Linear(in_features=4,out_features=4)),
('ReLU0', nn.ReLU()),
('fc1L:final', nn.Linear(in_features=4,out_features=1))
])
mdl = nn.Sequential(params)
# throws error
# mdl['fc0']
for m in mdl.children():
print(m)
print()
for m in mdl.modules():
print(m)
print()
for name, m in mdl.named_modules():
print(name)
print(m)
print()
for name, m in mdl.named_children():
print(name)
print(m)
答案 4 :(得分:0)
假设m
是您的模块,则可以执行以下操作:
for layer in m.children():
weights = list(layer.parameters())