我有一个pandas数据框如下:
User ASIN Rating
A23VKINWRY6J92 1476783284 5
A3HC4SRK7B2AXR 1496177029 5
AE12HJWB5ODOD B00K2GAUC0 4
AL4RYO265J1G 061579615X 3
我想生成一个字典,其中有2列'User'和'ASIN'作为键,第三列'Rating'作为值。如下所示:
my_dict[A23VKINWRY6J92][1476783284] = 5
my_dict[A3HC4SRK7B2AXR][1496177029] = 5
my_dict[AE12HJWB5ODOD][B00K2GAUC0] = 4
my_dict[AL4RYO265J1G][061579615X] = 3
我该怎么做?
答案 0 :(得分:5)
使用嵌套字典理解:
{u: {a: list(df.Rating[(df.User == u) & (df.ASIN == a)].unique()) for a in df.ASIN[df.User == u].unique()} for u in df.User.unique()}
请注意,这会映射到列表,因为结果值没有理由应该是唯一的。
答案 1 :(得分:2)
你的问题不是很清楚,但这样做你想要的吗?
>>> D = df.groupby(['User','ASIN'])['Rating'].apply(list).to_dict()
>>> {key[0]:{key[1]:val} for key, val in D.items()}
{('A23VKINWRY6J92', '1476783284'): [5], ('A3HC4SRK7B2AXR', '1496177029'): [5], ('AE12HJWB5ODOD', 'B00K2GAUC0'): [4], ('AL4RYO265J1G', '061579615X'): [3]}
因此,如果将其分配给my_dict
,那么您有
>>> my_dict['A23VKINWRY6J92']['1476783284']
[5]
等
答案 2 :(得分:0)
只要您拥有唯一的用户ID,这就应该有效。
my_dict ={d['ASIN'] : {d['User'] : d['Rating']} for d in df.to_dict(orient='records')}
或者,您可以过滤DataFrame以获得评级
rating = df.loc[(df['User']=='A23VKINWRY6J92') & (df['ASIN']=='1476783284'), 'Rating'][0]
答案 3 :(得分:0)
您可以使用defaultdict
from collections import defaultdict
d = defaultdict(dict)
for _,x in df.iterrows():
d[x['User']][x['ASIN']] = x['Rating']
d=dict(d)
d['A23VKINWRY6J92']['1476783284']
Out[108]: 5