我有一个包含PERIOD_START_TIME,ID,更多列和列VALUE的数据框。 我需要的是按PERIOD_START_TIME和ID分组(因为时间和ID有重复的行)并取值VALUE的最大值。 DF:
PERIOD_START_TIME ID VALUE
06.01.2017 02:00:00 55 ... 35
06.01.2017 02:00:00 55 ... 22
06.01.2017 03:00:00 55 ... 63
06.01.2017 03:00:00 55 ... 33
06.01.2017 04:00:00 55 ... 63
06.01.2017 04:00:00 55 ... 45
06.01.2017 02:00:00 65 ... 10
06.01.2017 02:00:00 65 ... 5
06.01.2017 03:00:00 65 ... 22
06.01.2017 03:00:00 65 ... 5
06.01.2017 04:00:00 65 ... 12
06.01.2017 04:00:00 65 ... 15
期望的输出:
PERIOD_START_TIME ID ... VALUE
06.01.2017 02:00:00 55 ... 35
06.01.2017 03:00:00 55 ... 63
06.01.2017 04:00:00 55 ... 63
06.01.2017 02:00:00 65 ... 10
06.01.2017 03:00:00 65 ... 22
06.01.2017 04:00:00 65 ... 15
答案 0 :(得分:4)
app.get('/', (req, res) => {
var count = 0;
request(url1, function(err, data) {
count++;
// something to be done
if(count == 3) {
res.render('index');
}
});
request(url2, function(err, data) {
count++;
// something to be done
if(count == 3) {
res.render('index');
}
});
request(url3, function(err, data) {
count++;
// something to be done
if(count == 3) {
res.render('index');
}
});
或者:
print (df)
PERIOD_START_TIME ID A VALUE
0 06.01.2017 02:00:00 55 8 35
1 06.01.2017 02:00:00 55 8 22
2 06.01.2017 03:00:00 55 8 63
3 06.01.2017 03:00:00 55 8 33
4 06.01.2017 04:00:00 55 8 63
5 06.01.2017 04:00:00 55 8 45
6 06.01.2017 02:00:00 65 8 10
7 06.01.2017 02:00:00 65 8 5
8 06.01.2017 03:00:00 65 8 22
9 06.01.2017 03:00:00 65 8 5
10 06.01.2017 04:00:00 65 8 12
11 06.01.2017 04:00:00 65 8 15
df = df.groupby(['PERIOD_START_TIME','ID'], as_index=False)['VALUE'].max()
df = df.groupby(['PERIOD_START_TIME','ID'])['VALUE'].max().reset_index()
print (df)
PERIOD_START_TIME ID VALUE
0 06.01.2017 02:00:00 55 35
1 06.01.2017 02:00:00 65 10
2 06.01.2017 03:00:00 55 63
3 06.01.2017 03:00:00 65 22
4 06.01.2017 04:00:00 55 63
5 06.01.2017 04:00:00 65 15
替代:
df = df.loc[df.groupby(['PERIOD_START_TIME','ID'])['VALUE'].idxmax()]
print (df)
PERIOD_START_TIME ID A VALUE
0 06.01.2017 02:00:00 55 8 35
6 06.01.2017 02:00:00 65 8 10
2 06.01.2017 03:00:00 55 8 63
8 06.01.2017 03:00:00 65 8 22
4 06.01.2017 04:00:00 55 8 63
11 06.01.2017 04:00:00 65 8 15