我有一个类似于Decomposing equality of constructors coq的问题,但是,我的等式包含一个match
表达式。考虑一下这个例子(这是荒谬的,但仅用于澄清):
Fixpoint positive (n : nat) :=
match n with
| O => Some O
| S n => match positive n with
| Some n => Some (S n)
| None => None (* Note that this never happens *)
end
end.
Lemma positiveness : forall n : nat, Some (S n) = positive (S n).
Proof.
intro.
simpl.
此时,在环境中使用n : nat
,目标是:
Some (S n) =
match positive n with
| Some n0 => Some (S n0)
| None => None
end
我想将其转换为环境n, n0 : nat
中的两个子目标:
positive n = Some n0 (* Verifying the match *)
S n = S n0 (* Verifying the result *)
我希望如果证明相等的match
有多个可能有效的案例,那么新目标就是所有可能性的分离,例如对
Some (S n) =
match positive n with
| Some (S n0) => Some (S (S n0))
| Some O => Some (S O)
| None => None
end
我希望
(positive n = Some (S n0) /\ S n = S (S n0)) (* First alternative *)
\/ (positive n = Some O /\ S n = S O) (* Second alternative *)
是否有Coq战术可以做到这一点或类似事情?
答案 0 :(得分:2)
是否有Coq战术可以做到这一点或类似事情?
如果您运行destruct (positive n) eqn:H
,您将获得两个子目标。在第一个子目标中,你得到:
n, n0 : nat
H : positive n = Some n0
============================
Some (S n) = Some (S n0)
在第二个子目标中你得到了
n : nat
H : positive n = None
============================
Some (S n) = None
这不是你要求的,但在第二个子目标中,你可以写assert (exists n0, positive n = Some n0)
;这将为您提供所寻求的目标,并且您可以通过destruct
exists
并使用congruence
或discriminate
来展示剩余的目标,以显示positive n
不能同时为None
和Some
。
答案 1 :(得分:0)
我无法理解你的动机。在您的示例中,使用更一般的引理更容易证明您的结果:
Fixpoint positive (n : nat) :=
match n with
| O => Some O
| S n => match positive n with
| Some n => Some (S n)
| None => None (* Note that this never happens *)
end
end.
Lemma positiveness n : positive n = Some n.
Proof.
now induction n as [|n IH]; simpl; trivial; rewrite IH.
Qed.
Lemma positiveness' n : Some (S n) = positive (S n).
Proof. now rewrite positiveness. Qed.
您想要执行的案例分析是否更适合其他应用程序?