我是编码的新手。有人可以使用h5py帮助Python中的脚本,其中我们可以读取所有目录和子目录,将多个h5文件合并为一个h5文件。
答案 0 :(得分:1)
您需要的是文件中所有数据集的列表。我认为recursive function的概念就是这里所需要的。这将允许您从组中提取所有“数据集”,但当其中一个看起来是一个组本身时,递归执行相同的操作,直到找到所有数据集。例如:
/
|- dataset1
|- group1
|- dataset2
|- dataset3
|- dataset4
你的函数应该在伪代码中看起来像:
def getdatasets(key, file):
out = []
for name in file[key]:
path = join(key, name)
if file[path] is dataset: out += [path]
else out += getdatasets(path, file)
return out
对于我们的例子:
/dataset1
是一个数据集:添加输出路径,给出
out = ['/dataset1']
/group
不是数据集:call getdatasets('/group',file)
/group/dataset2
是一个数据集:添加输出路径,给出
nested_out = ['/group/dataset2']
/group/dataset3
是一个数据集:添加输出路径,给出
nested_out = ['/group/dataset2', '/group/dataset3']
这已添加到我们已有的内容中:
out = ['/dataset1', '/group/dataset2', '/group/dataset3']
/dataset4
是一个数据集:添加输出路径,给出
out = ['/dataset1', '/group/dataset2', '/group/dataset3', '/dataset4']
此列表可用于将所有数据复制到另一个文件。
要制作一个简单的克隆,您可以执行以下操作。
import h5py
import numpy as np
# function to return a list of paths to each dataset
def getdatasets(key,archive):
if key[-1] != '/': key += '/'
out = []
for name in archive[key]:
path = key + name
if isinstance(archive[path], h5py.Dataset):
out += [path]
else:
out += getdatasets(path,archive)
return out
# open HDF5-files
data = h5py.File('old.hdf5','r')
new_data = h5py.File('new.hdf5','w')
# read as much datasets as possible from the old HDF5-file
datasets = getdatasets('/',data)
# get the group-names from the lists of datasets
groups = list(set([i[::-1].split('/',1)[1][::-1] for i in datasets]))
groups = [i for i in groups if len(i)>0]
# sort groups based on depth
idx = np.argsort(np.array([len(i.split('/')) for i in groups]))
groups = [groups[i] for i in idx]
# create all groups that contain dataset that will be copied
for group in groups:
new_data.create_group(group)
# copy datasets
for path in datasets:
# - get group name
group = path[::-1].split('/',1)[1][::-1]
# - minimum group name
if len(group) == 0: group = '/'
# - copy data
data.copy(path, new_data[group])
当然,根据您的需要,可以进行进一步的自定义。您描述了一些文件组合。在这种情况下,你必须
new_data = h5py.File('new.hdf5','a')
并且可能会在路径上添加一些内容。