我有使用Python进行分类的阿拉伯数据集; Twitter目录中的两个目录(负面和正面)。
我想使用Python类对数据进行分类。当我运行附加的代码时,会发生以下错误:
> 文件" C:\ Users \ DEV2016 \ Anaconda2 \ lib \ encodings \ utf_8.py",第16行,解码 return codecs.utf_8_decode(input,errors,True)
UnicodeDecodeError:' utf8'编解码器不能解码位置0中的字节0xc7:无效的连续字节
import sklearn.datasets
import sklearn.metrics
import sklearn.cross_validation
import sklearn.svm
import sklearn.naive_bayes
import sklearn.neighbors
dir_path = "E:\Twitter\Twitter"
# Loading files into memory
files = sklearn.datasets.load_files(dir_path)
# Calculating BOW
count_vector = sklearn.feature_extraction.text.CountVectorizer()
word_counts=count_vector.fit_transform(files.data)
# Calculating TFIDF
tf_transformer = sklearn.feature_extraction.text.TfidfTransformer(use_idf=True).fit(word_counts)
X = tf_transformer.transform(word_counts)
# Create classifier
# clf = sklearn.naive_bayes.MultinomialNB()
# clf = sklearn.svm.LinearSVC()
n_neighbors = 11
weights = 'distance'
clf = sklearn.neighbors.KNeighborsClassifier(n_neighbors, weights=weights)
# Test the classifier
# Train-test split
test_size=0.4
X_train, X_test, y_train, y_test = sklearn.cross_validation.train_test_split(X, files.target, test_size=test_size)
# Test classifier
clf.fit(X_train, y_train)
y_predicted = clf.predict(X_test)
print (sklearn.metrics.classification_report(y_test, y_predicted,
target_names=files.target_names))
print ('Confusion Matrix:')
print (sklearn.metrics.confusion_matrix(y_test, y_predicted))
回溯
File "<ipython-input-19-8ea269fd9c3d>", line 1, in <module>
runfile('C:/Users/DEV2016/.spyder/clf.py', wdir='C:/Users/DEV2016/.spyder')
File "C:\Users\DEV2016\Anaconda2\lib\site-
packages\spyder\utils\site\sitecustomize.py", line 705, in runfile
execfile(filename, namespace)
File "C:\Users\DEV2016\Anaconda2\lib\site-
packages\spyder\utils\site\sitecustomize.py", line 87, in execfile
exec(compile(scripttext, filename, 'exec'), glob, loc)
File "C:/Users/DEV2016/.spyder/clf.py", line 18, in <module>
word_counts=count_vector.fit_transform(files.data)
File "C:\Users\DEV2016\Anaconda2\lib\site-
packages\sklearn\feature_extraction\text.py", line 869, in fit_transform
self.fixed_vocabulary_)
File "C:\Users\DEV2016\Anaconda2\lib\site-
packages\sklearn\feature_extraction\text.py", line 792, in _count_vocab
for feature in analyze(doc):
File "C:\Users\DEV2016\Anaconda2\lib\site-
packages\sklearn\feature_extraction\text.py", line 266, in <lambda>
tokenize(preprocess(self.decode(doc))), stop_words)
File "C:\Users\DEV2016\Anaconda2\lib\site-
packages\sklearn\feature_extraction\text.py", line 116, in decode
doc = doc.decode(self.encoding, self.decode_error)
File "C:\Users\DEV2016\Anaconda2\lib\encodings\utf_8.py", line 16, in decode
return codecs.utf_8_decode(input, errors, True)
UnicodeDecodeError: 'utf8' codec can't decode byte 0xc7 in position 0:
invalid continuation byte
答案 0 :(得分:0)
在您尝试加载的Twitter数据中,有一些字符无法被utf-8识别。尝试使用其他编码格式(如
)加载它className