我正在使用this tutorial来围绕JAGS代码。在'具有附加分类预测器的相同模型'部分中,它指出“此模型包括性别和体长之间的相互作用”。如何删除它以便没有交互?
这是R和JAGS中的完整设置和模型。
首先是数据:
Spaces
JAGS代码:
set.seed(42)
samplesize <- 50 # Larger sample size because we're fitting a more complex model
b_length <- sort(rnorm(samplesize)) # Body length
sex <- sample(c(0, 1), size = samplesize, replace = T) # Sex (0: female, 1: male)
int_true_f <- 30 # Intercept of females
int_true_m_diff <- 5 # Difference between intercepts of males and females
slope_true_f <- 10 # Slope of females
slope_true_m_diff <- -3 # Difference between slopes of males and females
mu <- int_true_f + sex * int_true_m_diff + (slope_true_f + sex * slope_true_m_diff) * b_length # True means
sigma <- 5 # True standard deviation of normal distributions
b_mass <- rnorm(samplesize, mean = mu, sd = sigma) # Body mass (response variable)
# Combine into a data frame:
snakes2 <- data.frame(b_length = b_length, b_mass = b_mass, sex = sex)
head(snakes2)
jagsdata_s2 <- with(snakes2, list(b_mass = b_mass, b_length = b_length, sex = sex, N = length(b_mass)))
初始值并运行:
lm2_jags <- function(){
# Likelihood:
for (i in 1:N){
b_mass[i] ~ dnorm(mu[i], tau) # tau is precision (1 / variance)
mu[i] <- alpha[1] + sex[i] * alpha[2] + (beta[1] + beta[2] * sex[i]) * b_length[i]
}
# Priors:
for (i in 1:2){
alpha[i] ~ dnorm(0, 0.01)
beta[i] ~ dnorm(0, 0.01)
}
sigma ~ dunif(0, 100)
tau <- 1 / (sigma * sigma)
}
答案 0 :(得分:1)
交互项包含在mu的计算中。性别改变了如何通过斜率术语定义体长和体重之间的公式。为了建立一个模型,其中性别和体长被视为独立于它们如何影响体重,你可以做这样的事情:
mu <- int_true_f + (sex * int_true_m_diff) + b_length
JAGS代码将成为
lm2_jags <- function(){
# Likelihood:
for (i in 1:N){
b_mass[i] ~ dnorm(mu[i], tau) # tau is precision (1 / variance)
mu[i] <- alpha[1] + (sex[i] * alpha[2]) + (b_length[i] * alpha[3])
}
# Priors:
for (i in 1:3){
alpha[i] ~ dnorm(0, 0.01)
}
sigma ~ dunif(0, 100)
tau <- 1 / (sigma * sigma)
}