我想在一些颜色斑点周围绘制边界框,颜色我事先不知道。图像看起来像这样:
场景中的每种颜色代表不同的对象。我已经在图像的灰度版本上尝试了findContours,但是如果它们重叠,那么获得的轮廓包含多个对象。我希望获得单个对象的轮廓,或者如果对象被场景中的另一个对象分割,则获得对象的多个轮廓。有没有办法在OpenCV中实现这一目标? 非常感谢您的关注和时间!
编辑:按照建议,这里是我的代码
img = cv2.imread(img_path)
imgray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
kernel = np.ones((5,5), np.uint8)
im2, contours, hierarchy = cv2.findContours(imgray, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
bboxes = []
for c in contours:
x, y, w, h = cv2.boundingRect(c)
M = cv2.moments(c)
if M["m00"]:
cx = int(M['m10']/M['m00'])
cy = int(M['m01']/M['m00'])
area = cv2.contourArea(c)
if area >= 25:
colorHash = img[cy, cx]
bboxes.append((Box(Point(x, y), Point(x+w, y+h)), colorHash, area))
cv2.drawContours(img, [c], -1, (0, 0, 255), 1)
cv2.imshow("Image", img)
cv2.waitKey(0)
return bboxes, contours
这里是我正在尝试解决的问题的图像(标记为蓝色,轮廓为红色,对象应具有单独的轮廓)
答案 0 :(得分:0)
您可以对图像的HSV颜色空间进行光栅扫描,并根据某些色调范围的色调值对每个像素进行分类。 之后,使用不同的色调值类对图像进行遮罩,从而对不同颜色的每个单独对象进行分割。
答案 1 :(得分:0)
`
# -i : image path
# import stuff
import numpy as np
import argparse
import cv2
# Construct argument
ap = argparse.ArgumentParser()
ap.add_argument( "-i", "--image", required = True, help = "Path to the image")
ap.add_argument("-t", "--threshold", type = int, default = 100, help = "Enter threshold value")
args = vars(ap.parse_args())
# load image / grayscale
image = cv2.imread(args["image"])
print (image.shape)
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
kernel = np.ones((5,5), np.uint8)
# blur the image for a mask
img = cv2.erode(gray, kernel, iterations=1)
img = cv2.dilate(img, kernel, iterations=1)
blurred = cv2.blur(img, (3,3))
# Threshold image to segment the objects
# requires grayscale image
methods = [
("THRESH_BINARY", cv2.THRESH_BINARY)
#("THRESH_BINARY_INV", cv2.THRESH_BINARY_INV)
]
# loop for each threshold method
# (T, threshImage) = cv2.threshold(src, thresh, maxval, type)
for (threshName, threshMethod) in methods:
(T, threshImage) = cv2.threshold(blurred, args["threshold"], 255, threshMethod)
cv2.namedWindow(threshName,cv2.WINDOW_NORMAL)
cv2.resizeWindow(threshName, 600,600)
cv2.imshow(threshName, threshImage)
cv2.waitKey(0)
# # Adaptive thresholding
# adaptiveThresh = cv2.adaptiveThreshold(blurred, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY_INV, 11, 4)
# Crop target image using thresh as mask
masked = cv2.bitwise_and(gray, gray, mask = threshImage)
# cv2.imshow("Mased Image", masked)
# cv2.waitKey(0)
# find contours
(_, cnts, _) = cv2.findContours(masked.copy(), cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
print (" No. of Contours ={}".format(len(cnts)))
# draw the contours on top of the original image
drops = image.copy()
cv2.drawContours(drops, cnts, -1, (0, 255, 0), 2)
cv2.namedWindow("Contours",cv2.WINDOW_NORMAL)
cv2.resizeWindow("Contours", 600,600)
cv2.imshow("Contours", drops)
cv2.waitKey(0)
cv2.imwrite('contours.png',drops)
答案 2 :(得分:0)
两种方法:
使用轮廓方法,并保持斑点的颜色(轮廓中的任何像素)以及边界框。然后合并相同颜色的边界框。这可以通过颜色索引的边界框字典来帮助完成。
扫描图像,从空字典开始。每次遇到非黑色像素时,查找其颜色并创建或更新边界框。
请注意,无需转换为其他颜色系统,请保留原始RGB。