张量流对象检测API将输出图像的分辨率与输入测试图像进​​行匹配

时间:2018-02-07 15:25:49

标签: python-3.x tensorflow computer-vision deep-learning object-detection

我正在使用Tensorflow对象检测API,具体我指的是这个Ipython笔记本的检测部分(https://github.com/tensorflow/models/blob/master/research/object_detection/object_detection_tutorial.ipynb) 我在test_image文件夹中输入图像,该图像的分辨率为1737x979。但是当我通过Tensorflow对象检测API的检测部分运行此代码时。我将图像大小设置为1200x800。如何以与输入相同的比率输出图像(在这种情况下,输出图像应具有分辨率1737x979而不是1200x800)

IMAGE_SIZE = (12, 8) #output image size in inches


with detection_graph.as_default():
  with tf.Session(graph=detection_graph) as sess:
    # Definite input and output Tensors for detection_graph
    image_tensor = detection_graph.get_tensor_by_name('image_tensor:0')
    # Each box represents a part of the image where a particular object was detected.
    detection_boxes = detection_graph.get_tensor_by_name('detection_boxes:0')
    # Each score represent how level of confidence for each of the objects.
    # Score is shown on the result image, together with the class label.
    detection_scores = detection_graph.get_tensor_by_name('detection_scores:0')
    detection_classes = detection_graph.get_tensor_by_name('detection_classes:0')
    num_detections = detection_graph.get_tensor_by_name('num_detections:0')

    #myFile = open('example2.csv', 'w')
    i=0
    #boxeslist=[]
    new_boxes = []
    for image_path in TEST_IMAGE_PATHS:
      image = Image.open(image_path)
      # the array based representation of the image will be used later in order to prepare the
      # result image with boxes and labels on it.
      image_np = load_image_into_numpy_array(image)
      # Expand dimensions since the model expects images to have shape: [1, None, None, 3]
      image_np_expanded = np.expand_dims(image_np, axis=0)
      # Actual detection.
      (boxes, scores, classes, num) = sess.run(
          [detection_boxes, detection_scores, detection_classes, num_detections],
          feed_dict={image_tensor: image_np_expanded})
      # Visualization of the results of a detection.
      vis_util.visualize_boxes_and_labels_on_image_array(
          image_np,
          np.squeeze(boxes),
          np.squeeze(classes).astype(np.int32),
          np.squeeze(scores),
          category_index,
          use_normalized_coordinates=True,
          line_thickness=4)
      plt.figure(figsize=IMAGE_SIZE)
      plt.imshow(image_np)

我需要更改IMAGE_SIZE,以便维护输入图像的尺寸。 此外,输出图像是带有白色背景的图形,如何删除此白色轮廓?

1 个答案:

答案 0 :(得分:0)

如果您仔细观察输出图像与我们在matplotlib中绘制图形时得到的结果相似,则可以解决问题。放大,您将看到图像的x和y尺寸,无论您更改IMAGE_SIZE变量,这些x和y尺寸都保持不变