pygame.error:显示表面退出

时间:2018-01-27 11:24:15

标签: python-3.x opencv pygame opencv-contour pygame-surface

我正在创建一个python proram,我们可以使用我们的手势而不是键盘来玩古典蛇xenzia游戏。在我的蛇被击中边界时,pygame窗口就被摧毁了。我然后重新初始化游戏功能,但似乎没有做的技巧,并抛出一个错误。我想重新初始化pygame窗口,以便用户可以重新启动游戏,而不是再次启动游戏。任何帮助表示赞赏。提前谢谢。这是我的代码:

import pygame, random, sys
from pygame.locals import *
import cv2
import numpy as np
import math
import sqlite3
from tkinter import *
from ctypes import windll
import time



def collide(x1, x2, y1, y2, w1, w2, h1, h2):
if x1+w1>x2 and x1<x2+w2 and y1+h1>y2 and y1<y2+h2:return True
else:return False
def die(screen, score):

    global conn,cap
    f=pygame.font.SysFont('Arial', 30);t=f.render('Your score was: 
'+str(score), True, (0, 0, 0));screen.blit(t, (10, 
270));pygame.display.update();pygame.time.wait(2000)
    time.sleep(3)


    pygame.display.quit()        
    cv2.destroyAllWindows()

    r2 = conn.execute("select score from highscore order by score limit 10")
    sc_list = list(r2.fetchall())
    if(score <= int(max(sc_list[0])) and score >= int(min(sc_list[0]))):
            n = enter_name()
            #print(n)
            conn.execute("insert into highscore(name,score) values (?,?)",
(n,score))
    conn.commit()
    cap.release()
    #pygame.display.quit()
    #sys.exit(0)
    main_menu()

def get_name():
global e,string
string = e.get() 
return string
root1.destroy()



def enter_name():

    global root,w


    root1 = Tk()


    #global e,root1


    root1.geometry('%dx%d+%d+%d' % (700,500, 640, 100))

    b = Button(root1,text='okay',command=get_name)
    b.place(x=300,y=200)


    e = Entry(root1)
    e.place(x=250,y=150)
    e.focus_set()
    return string
    root1.mainloop()



def game():

decl()
time.sleep(2)
cap = cv2.VideoCapture(0)

global 
start,xs1,ys1,dirs1,score1,applepos1,s1,appleimage1,img1,f1,clock1,res
pygame.init()
pygame.display.set_caption('Snake')
SetWindowPos(pygame.display.get_wm_info()['window'], -1, 0, 10, 0, 0, 
0x0001)
pygame.draw.line(s1,(255,255,255),(5,0),(5,600),3)

while (cap.isOpened()):
    #s1.fill((0,0,0))

    #SNAKE'S EXECUTION
    #-----------------------------------------------------------------------
----------------
    #if(start == True):
    clock1.tick(10)
    for e in pygame.event.get():
        if e.type == QUIT:
            sys.exit(0)
        '''
        elif e.type == KEYDOWN:
            if e.key == K_UP and dirs1 != 0:dirs1 = 2
            elif e.key == K_DOWN and dirs1 != 2:dirs1 = 0
            elif e.key == K_LEFT and dirs1 != 1:dirs1 = 3
            elif e.key == K_RIGHT and dirs1 != 3:dirs1 = 1
        '''

    i = len(xs1)-1
    while i >= 2:
        if collide(xs1[0], xs1[i], ys1[0], ys1[i], 20, 20, 20, 20):die(s1, 
score1)
        i-= 1
    if collide(xs1[0], applepos1[0], ys1[0], applepos1[1], 20, 10, 20, 
   10):score1+=1;xs1.append(700);ys1.append(700);applepos1=
    (random.randint(0,590),random.randint(0,590))
    if xs1[0] < 0 or xs1[0] > 580 or ys1[0] < 0 or ys1[0] > 580:die(s1, 
   score1)
    i = len(xs1)-1
    while i >= 1:
        xs1[i] = xs1[i-1];ys1[i] = ys1[i-1];i -= 1
    if dirs1==0:
        ys1[0] += 20
    elif dirs1==1:
        xs1[0] += 20
    elif dirs1==2:
        ys1[0] -= 20
    elif dirs1==3:
        xs1[0] -= 20
    s1.fill((0,0,0))
    for i in range(0, len(xs1)):
        s1.blit(img1, (xs1[i], ys1[i]))
    s1.blit(appleimage1, applepos1);t1=f1.render(str(score1), True, 
(255,255,255));s1.blit(t1, (10, 10));pygame.display.update()

    #-----------------------------------------------------------------------
----------------

    #DETECTION'S EXECUTION
    #-----------------------------------------------------------------------
----------------


    ret, img = cap.read()


    # get hand data from the rectangle sub window on the screen
    cv2.rectangle(img, (450,450), (200,200), (0,255,0),0)
    crop_img = img[200:450, 200:450]


    # convert to grayscale
    grey = cv2.cvtColor(crop_img, cv2.COLOR_BGR2GRAY)

    # applying gaussian blur
    value = (35, 35)
    blurred = cv2.GaussianBlur(grey, value, 0)

    # thresholdin: Otsu's Binarization method
    _, thresh1 = cv2.threshold(blurred, 127, 255,
                           cv2.THRESH_BINARY_INV+cv2.THRESH_OTSU)

    # show thresholded image

    # check OpenCV version to avoid unpacking error
    (version, _, _) = cv2.__version__.split('.')

    if version == '3':
        image, contours, hierarchy = cv2.findContours(thresh1.copy(), \
               cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE)
    elif version == '2':
        contours, hierarchy = cv2.findContours(thresh1.copy(),cv2.RETR_TREE, 
\
               cv2.CHAIN_APPROX_NONE)

    # find contour with max area
    cnt = max(contours, key = lambda x: cv2.contourArea(x))

    # create bounding rectangle around the contour (can skip below two 
lines)
    x, y, w, h = cv2.boundingRect(cnt)
    cv2.rectangle(crop_img, (x, y), (x+w, y+h), (0, 0, 255), 0)

    # finding convex hull
    hull = cv2.convexHull(cnt)

    # drawing contours
    drawing = np.zeros(crop_img.shape,np.uint8)
    cv2.drawContours(drawing, [cnt], 0, (0, 255, 0), 0)
    cv2.drawContours(drawing, [hull], 0,(0, 0, 255), 0)

    # finding convex hull
    hull = cv2.convexHull(cnt, returnPoints=False)

    # finding convexity defects
    defects = cv2.convexityDefects(cnt, hull)
    count_defects = 0
    cv2.drawContours(thresh1, contours, -1, (0, 255, 0), 3)

    # applying Cosine Rule to find angle for all defects (between fingers)
    # with angle > 90 degrees and ignore defects
    for i in range(defects.shape[0]):
        s,e,f,d = defects[i,0]

        start = tuple(cnt[s][0])
        end = tuple(cnt[e][0])
        far = tuple(cnt[f][0])

        # find length of all sides of triangle
        a = math.sqrt((end[0] - start[0])**2 + (end[1] - start[1])**2)
        b = math.sqrt((far[0] - start[0])**2 + (far[1] - start[1])**2)
        c = math.sqrt((end[0] - far[0])**2 + (end[1] - far[1])**2)

        # apply cosine rule here
        angle = math.acos((b**2 + c**2 - a**2)/(2*b*c)) * 57

        # ignore angles > 90 and highlight rest with red dots
        if angle <= 90:
            count_defects += 1
            cv2.circle(crop_img, far, 1, [0,0,255], -1)
        #dist = cv2.pointPolygonTest(cnt,far,True)

        # draw a line from start to end i.e. the convex points (finger tips)
        # (can skip this part)
        cv2.line(crop_img,start, end, [0,255,0], 2)
        #cv2.circle(crop_img,far,5,[0,0,255],-1)

    # define actions required
    if count_defects == 1 and dirs1 != 0:
        dirs1 = 2
        #print('!!!!!!!!!1')        
        start=True
    elif count_defects == 2 and dirs1 != 2:
        dirs1 = 0
    elif count_defects == 3 and dirs1 != 1:
        dirs1 = 3
    elif count_defects == 4 and dirs1 != 3:
        dirs1 = 1

    all_img = np.hstack((drawing, crop_img))
    cv2.imshow('Contours', all_img)
    cv2.imshow('Thresholded', thresh1)

    # show appropriate images in windows
    cv2.imshow('Gesture', img)
    #cv2.resizeWindow('Gesture',800,800)
    cv2.moveWindow('Gesture',700,50)
    k = cv2.waitKey(10)
    if k == 27:
        break
    #-----------------------------------------------------------------------
----------------

0 个答案:

没有答案