如何从Python中的2D散点图数据创建热图?

时间:2018-01-27 03:15:34

标签: python heatmap

如何从Python中的2D散点图数据创建热图,其中散点图中的每个(x,y)点都有一个与之关联的z值? z值将是用于为热图着色的值。

例如,在R中,我可以使用:

# This example is from http://knowledge-forlife.com/r-creating-heatmap-scatterplot-data/
#I'm just setting the seed so you can see the same example on your computer
set.seed(1)

#Our X data
x <- runif(150)

#Our Y data
y <- runif(150)

#Our Z data
z <- c(rnorm(mean=1,100),rnorm(mean=20,50))

#Store the length of our data
N <- length(x)

# View the scatterplot
plot(x, y)

#Here is the interpolation to give the heatmap effect. 
#Use xo and yo to set the output grid you want to use.
#xo and yo are used to change the resolution of the interpolation
#Here, I have included a somewhat standard protocol for these parameters
s <- interp(x,y,z,xo=seq(min(x),max(x),length=N),
            yo=seq(min(x),max(x),length=N),duplicate="mean")

#Here's where the fun happens
#Note you can add your typical plotting paramaters here, such as xlab or ylab
image.plot(s,xlim=c(0,1),ylim=c(0,1),zlim=c(-2,25))

Scatterplot(此散点图中的每个(x,y)点都有一个与之关联的z值; z值在散点图中不可见):

enter image description here

对应的热图(颜色代表z值):

enter image description here

请注意,此问题与Generate a heatmap in MatPlotLib using a scatter data set不同,其中热图中的颜色代表(x,y)点的密度。

2 个答案:

答案 0 :(得分:2)

以下是使用python进行矢量操作并将numpy用于绘图的代码转换为matplotlib

import numpy as np
from matplotlib import pyplot

x = np.random.uniform(size=150)
y = np.random.uniform(size=150)
z = np.concatenate([np.random.randn(100)+1, np.random.randn(50)+20])

pyplot.plot(x, y, 'ok')
pyplot.tricontourf(x, y, z)
pyplot.show()

这里的一个区别是我没有使用插值将x和y放在网格上,而是使用matplotlib的{​​{1}}使用三角曲面细分。如果需要将数据放到矩形网格上,可以使用tricontourf,它与R中的scipy.interpolate.griddata函数非常相似。然后,为了绘制规则网格,可以使用{{ 1}}。

答案 1 :(得分:2)

我接受了Gerges Dib的建议。以下是来自3D高斯分布的代码,采样(x,y,z):

import numpy as np
import scipy.interpolate
from scipy.stats import multivariate_normal
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()

# Sample from 3D Gaussian distribution
np.random.seed(0)
number_of_samples = 20
x = np.random.rand(number_of_samples)
y = np.random.rand(number_of_samples)
xy = np.column_stack([x.flat, y.flat]) # Create a (N, 2) array of (x, y) pairs.
mu = np.array([0.0, 0.0])
sigma = np.array([.95, 2.5])
covariance = np.diag(sigma**2)
z = multivariate_normal.pdf(xy, mean=mu, cov=covariance)

plt.scatter(x, y)
plt.savefig('scatterplot.png', dpi=300)

plt.tricontourf(x, y, z)
plt.savefig('tricontourf.png', dpi=300)

# Interpolate and generate heatmap:
grid_x, grid_y = np.mgrid[x.min():x.max():1000j, y.min():y.max():1000j]
for method in ['nearest','linear','cubic'] :
    plt.figure()
    grid_z = scipy.interpolate.griddata(xy,z,(grid_x, grid_y), method=method)
    # [pcolormesh with missing values?](https://stackoverflow.com/a/31687006/395857)
    import numpy.ma as ma
    plt.pcolormesh(grid_x, grid_y, ma.masked_invalid(grid_z), cmap='RdBu', vmin=np.nanmin(grid_z), vmax=np.nanmax(grid_z))
    plt.title('{0} interpolation'.format(method))
    plt.colorbar()
    plt.savefig('heatmap_interpolation_{0}.png'.format(method), dpi=300)
    plt.clf()
    plt.close()

scatterplot.png:

enter image description here

tricontourf.png:

enter image description here

heatmap_interpolation_nearest.png

enter image description here

heatmap_interpolation_linear.png:

enter image description here

heatmap_interpolation_cubic.png:

enter image description here