我在Tensorflow中定义了一个3D转置卷积,如下所示:
def weights(shape):
return tf.Variable(tf.truncated_normal(shape, mean = 0.0, stddev=0.1))
def biases(shape):
return tf.Variable(tf.constant(value = 0.1, shape = shape))
def trans_conv3d(x, W, output_shape, strides, padding):
return tf.nn.conv3d_transpose(x, W, output_shape, strides, padding)
def transconv3d_layer(x, shape, out_shape, strides, padding):
# shape: [depth, height, width, output_channels, in_channels].
# output_shape: [batch, depth, height, width, output_channels]
W = weights(shape)
b = biases([shape[4]])
return tf.nn.elu(trans_conv3d(x, W, out_shape, strides, padding) + b)
假设我的前一个图层{4}具有x
,[2, 1, 1, 1, 10]
,batch = 2
,depth = 1
的形状为height = 1
的4D张量width = 1
,和in_channels = 10
列出here。
如何使用transconv3d_layer
对x
,在一系列图层上进行上采样,以获得最终形状,例如[2, 100, 100, 100, 10]
或其他内容类似的?我不清楚如何通过转置层跟随张量的形状。
答案 0 :(得分:1)
以下是如何使用它:
input = tf.random_normal(shape=[2, 1, 1, 1, 10])
deconv1 = transconv3d_layer(input,
shape=[2, 3, 3, 10, 10],
out_shape=[2, 50, 50, 50, 10],
strides=[1, 1, 1, 1, 1],
padding='SAME')
deconv2 = transconv3d_layer(deconv1,
shape=[2, 3, 3, 10, 10],
out_shape=[2, 100, 100, 100, 10],
strides=[1, 1, 1, 1, 1],
padding='SAME')
# deconv3 ...
print(deconv1) # Tensor("Elu:0", shape=(2, 50, 50, 50, 10), dtype=float32)
print(deconv2) # Tensor("Elu_1:0", shape=(2, 100, 100, 100, 10), dtype=float32)
基本上,您应将每个out_shape
指定为您想要上传到(2, 50, 50, 50, 10)
,(2, 100, 100, 100, 10)
,...
input shape: [batch, depth, height, width, in_channels]
filter shape: [depth, height, width, output_channels, in_channels]
output shape: [batch, depth, height, width, output_channels]
。
为了清楚起见,以下是不同张量中尺寸的含义:
template <class T>
struct has_unique_keys : std::false_type {};
template <class... P>
struct has_unique_keys<std::set<P...>> : std::true_type {};
template <class... P>
struct has_unique_keys<std::map<P...>> : std::true_type {};
// ...