我正在使用here(paper here)中的代码来创建GAN。我正在尝试将其应用于新领域,从其在MNIST上的应用切换到3D脑MRI图像。我的问题是GAN本身的定义。
例如,他们用于定义生成模型的代码(采用z_dim尺寸的噪声并从MNIST分布生成图像,因此为28x28)是这样,我的评论基于我的看法:
def generate(self, z):
# start with noise in compact space
assert z.shape[1] == self.z_dim
# Fully connected layer that for some reason expands to latent * 64
output = tflib.ops.linear.Linear('Generator.Input', self.z_dim,
self.latent_dim * 64, z)
output = tf.nn.relu(output)
# Reshape the latent dimension into 4x4 MNIST
output = tf.reshape(output, [-1, self.latent_dim * 4, 4, 4])
# Reduce the latent dimension to get 8x8 MNIST
output = tflib.ops.deconv2d.Deconv2D('Generator.2', self.latent_dim * 4,
self.latent_dim * 2, 5, output)
output = tf.nn.relu(output) # 8 x 8
# To be able to get 28x28 later?
output = output[:, :, :7, :7] # 7 x 7
# Reduce more to get 14x14
output = tflib.ops.deconv2d.Deconv2D('Generator.3', self.latent_dim * 2,
self.latent_dim, 5, output)
output = tf.nn.relu(output) # 14 x 14
output = tflib.ops.deconv2d.Deconv2D('Generator.Output',
self.latent_dim, 1, 5, output)
output = tf.nn.sigmoid(output) # 28 x 28
if self.gen_params is None:
self.gen_params = tflib.params_with_name('Generator')
return tf.reshape(output, [-1, self.x_dim])
这是我使用niftynet卷积层的代码,其中z_dim和latent_dim与以前的64位相同,并且我添加了print语句的结果:
def generate(self, z):
assert z.shape[1] == self.z_dim
generator_input = FullyConnectedLayer(self.latent_dim * 64,
acti_func='relu',
#with_bn = True,
name='Generator.Input')
output = generator_input(z, is_training=True)
print(output.shape) # (?, 4096)
#output = tflib.ops.linear.Linear('Generator.Input', self.z_dim,
# self.latent_dim * 64, z)
#output = tf.nn.relu(output)
output = tf.reshape(output, [-1, self.latent_dim * 4, 1, 18, 18]) # 4 x 4
print(output.shape) # (?, 256, 1, 18, 18)
generator_2 = DeconvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.2')
output = generator_2(output, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.2', self.latent_dim * 4,
# self.latent_dim * 2, 5, output)
#output = tf.nn.relu(output) # 8 x 8
print(output.shape) # (?, 512, 2, 36, 128)
#output = output[:, :, :-1, :-1] # 7 x 7
generator_3 = DeconvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.3')
output = generator_3(output, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.3', self.latent_dim * 2,
# self.latent_dim, 5, output)
#output = tf.nn.relu(output) # 14 x 14
print(output.shape) # (?, 1024, 4, 72, 64)
generator_out = DeconvolutionalLayer(1,
kernel_size=5,
stride=2,
acti_func='sigmoid',
name='Generator.Output')
output = generator_out(output, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.Output',
# self.latent_dim, 1, 5, output)
#output = tf.nn.sigmoid(output) # 28 x 28
if self.gen_params is None:
self.gen_params = tflib.params_with_name('Generator')
print(output.shape) # (?, 2048, 8, 144, 1)
print("Should be %s" % str(self.x_dim)) # [1, 19, 144, 144, 4]
return tf.reshape(output, self.x_dim)
我不太确定如何获得19英寸。目前,我收到此错误。
ValueError:尺寸大小必须可以被2359296平均整除,但对于输入形状为[?,2048,8,144,1],[5]的'Reshape_1'(op:'Reshape'),其尺寸为1575936,输入张量的计算方式为部分形状:input 1 = [1,19,144,144,4]。
对于建立神经网络,我还是一个相对较新的人,我也有一些问题。当我们已经在z空间中有了一个紧凑的表示形式时,潜在空间的意义是什么?如何确定“输出尺寸”的大小,即图层构造函数中的第二个参数?
我也一直在寻找一个成功实现CNN的方法,其中以here为灵感。 谢谢!
主要修改:
我取得了一些进展,并获得了tensorflow来运行代码。但是,即使批次大小为1,当我尝试运行训练操作时,我仍然遇到内存不足错误。我计算出一张图像的大小为19 * 144 * 144 * 4 * 32(每像素位数)=〜50 MB,因此不是引起内存错误的数据。由于我基本上只是调整GAN参数直到它起作用,所以我的问题很可能在那里。下面是整个文件。
class MnistWganInv(object):
def __init__(self, x_dim=784, z_dim=64, latent_dim=64, batch_size=80,
c_gp_x=10., lamda=0.1, output_path='./'):
self.x_dim = [-1] + x_dim[1:]
self.z_dim = z_dim
self.latent_dim = latent_dim
self.batch_size = batch_size
self.c_gp_x = c_gp_x
self.lamda = lamda
self.output_path = output_path
self.gen_params = self.dis_params = self.inv_params = None
self.z = tf.placeholder(tf.float32, shape=[None, self.z_dim])
self.x_p = self.generate(self.z)
self.x = tf.placeholder(tf.float32, shape=x_dim)
self.z_p = self.invert(self.x)
self.dis_x = self.discriminate(self.x)
self.dis_x_p = self.discriminate(self.x_p)
self.rec_x = self.generate(self.z_p)
self.rec_z = self.invert(self.x_p)
self.gen_cost = -tf.reduce_mean(self.dis_x_p)
self.inv_cost = tf.reduce_mean(tf.square(self.x - self.rec_x))
self.inv_cost += self.lamda * tf.reduce_mean(tf.square(self.z - self.rec_z))
self.dis_cost = tf.reduce_mean(self.dis_x_p) - tf.reduce_mean(self.dis_x)
alpha = tf.random_uniform(shape=[self.batch_size, 1], minval=0., maxval=1.)
difference = self.x_p - self.x
interpolate = self.x + alpha * difference
gradient = tf.gradients(self.discriminate(interpolate), [interpolate])[0]
slope = tf.sqrt(tf.reduce_sum(tf.square(gradient), axis=1))
gradient_penalty = tf.reduce_mean((slope - 1.) ** 2)
self.dis_cost += self.c_gp_x * gradient_penalty
self.gen_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Generator')
self.inv_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Inverter')
self.dis_params = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES, scope='Discriminator')
self.gen_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4, beta1=0.9, beta2=0.999).minimize(
self.gen_cost, var_list=self.gen_params)
self.inv_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4, beta1=0.9, beta2=0.999).minimize(
self.inv_cost, var_list=self.inv_params)
self.dis_train_op = tf.train.AdamOptimizer(
learning_rate=1e-4, beta1=0.9, beta2=0.999).minimize(
self.dis_cost, var_list=self.dis_params)
def generate(self, z):
print(z.shape)
assert z.shape[1] == self.z_dim
with tf.name_scope('Generator.Input') as scope:
generator_input = FullyConnectedLayer(self.latent_dim * 4 * 3 * 18 * 18,
acti_func='relu',
#with_bn = True,
name='Generator.Input')(z, is_training=True)
print(generator_input.shape)
#output = tflib.ops.linear.Linear('Generator.Input', self.z_dim,
# self.latent_dim * 64, z)
#output = tf.nn.relu(output)
generator_input = tf.reshape(generator_input, [-1, 3, 18, 18, self.latent_dim * 4]) # 4 x 4
print(generator_input.shape)
with tf.name_scope('Generator.2') as scope:
generator_2 = DeconvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.2')(generator_input, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.2', self.latent_dim * 4,
# self.latent_dim * 2, 5, output)
#output = tf.nn.relu(output) # 8 x 8
print(generator_2.shape)
with tf.name_scope('Generator.3') as scope:
generator_3 = DeconvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
acti_func='relu',
name='Generator.3')(generator_2, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.3', self.latent_dim * 2,
# self.latent_dim, 5, output)
#output = tf.nn.relu(output) # 14 x 14
print(generator_3.shape)
with tf.name_scope('Generator.Output') as scope:
generator_out = DeconvolutionalLayer(4,
kernel_size=5,
stride=2,
acti_func='sigmoid',
name='Generator.Output')(generator_3, is_training=True)
#output = tflib.ops.deconv2d.Deconv2D('Generator.Output',
# self.latent_dim, 1, 5, output)
#output = tf.nn.sigmoid(output) # 28 x 28
if self.gen_params is None:
self.gen_params = tflib.params_with_name('Generator')
print(generator_out.shape)
generator_out = generator_out[:, :19, :, :, :]
print(generator_out.shape)
print("Should be %s" % str(self.x_dim))
return tf.reshape(generator_out, self.x_dim)
def discriminate(self, x):
input = tf.reshape(x, self.x_dim) # 28 x 28
with tf.name_scope('Discriminator.Input') as scope:
discriminator_input = ConvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Discriminator.Input')(input, is_training=True)
#output = tflib.ops.conv2d.Conv2D(
# 'Discriminator.Input', 1, self.latent_dim, 5, output, stride=2)
#output = tf.nn.leaky_relu(output) # 14 x 14
with tf.name_scope('Discriminator.2') as scope:
discriminator_2 = ConvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Discriminator.2')(discriminator_input, is_training=True)
#output = tflib.ops.conv2d.Conv2D(
# 'Discriminator.2', self.latent_dim, self.latent_dim * 2, 5,
# output, stride=2)
#output = tf.nn.leaky_relu(output) # 7 x 7
with tf.name_scope('Discriminator.3') as scope:
discriminator_3 = ConvolutionalLayer(self.latent_dim*4,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Discriminator.3')(discriminator_2, is_training=True)
#output = tflib.ops.conv2d.Conv2D(
# 'Discriminator.3', self.latent_dim * 2, self.latent_dim * 4, 5,
# output, stride=2)
#output = tf.nn.leaky_relu(output) # 4 x 4
discriminator_3 = tf.reshape(discriminator_3, [-1, self.latent_dim * 48])
with tf.name_scope('Discriminator.Output') as scope:
discriminator_out = FullyConnectedLayer(1,
name='Discriminator.Output')(discriminator_3, is_training=True)
#output = tflib.ops.linear.Linear(
# 'Discriminator.Output', self.latent_dim * 64, 1, output)
discriminator_out = tf.reshape(discriminator_out, [-1])
if self.dis_params is None:
self.dis_params = tflib.params_with_name('Discriminator')
return discriminator_out
def invert(self, x):
output = tf.reshape(x, self.x_dim) # 28 x 28
with tf.name_scope('Inverter.Input') as scope:
inverter_input = ConvolutionalLayer(self.latent_dim,
kernel_size=5,
stride=2,
#padding='VALID',
#w_initializer=self.initializers['w'],
#w_regularizer=self.regularizers['w'],
#b_initializer=self.initializers['b'],
#b_regularizer=self.regularizers['b'],
acti_func='leakyrelu',
#with_bn = True,
name='Inverter.Input')
#output = tflib.ops.conv2d.Conv2D(
# 'Inverter.Input', 1, self.latent_dim, 5, output, stride=2)
#output = tf.nn.leaky_relu(output) # 14 x 14
output = inverter_input(output, is_training=True)
with tf.name_scope('Inverter.2') as scope:
inverter_2 = ConvolutionalLayer(self.latent_dim*2,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Inverter.2')
output = inverter_2(output, is_training=True)
#output = tflib.ops.conv2d.Conv2D(
# 'Inverter.2', self.latent_dim, self.latent_dim * 2, 5, output,
# stride=2)
#output = tf.nn.leaky_relu(output) # 7 x 7
with tf.name_scope('Inverter.3') as scope:
inverter_3 = ConvolutionalLayer(self.latent_dim*4,
kernel_size=5,
stride=2,
acti_func='leakyrelu',
name='Inverter.3')
output = inverter_3(output, is_training=True)
#output = tflib.ops.conv2d.Conv2D(
# 'Inverter.3', self.latent_dim * 2, self.latent_dim * 4, 5,
# output, stride=2)
#output = tf.nn.leaky_relu(output) # 4 x 4
output = tf.reshape(output, [-1, self.latent_dim * 48])
with tf.name_scope('Inverter.4') as scope:
inverter_4 = FullyConnectedLayer(self.latent_dim*8,
acti_func='leakyrelu',
#with_bn = True,
name='Inverter.4')
output = inverter_4(output, is_training=True)
#output = tflib.ops.linear.Linear(
# 'Inverter.4', self.latent_dim * 64, self.latent_dim * 8, output)
#output = tf.nn.leaky_relu(output)
with tf.name_scope('Inverter.Output') as scope:
inverter_output = FullyConnectedLayer(self.z_dim,
acti_func='leakyrelu',
#with_bn = True,
name='Inverter.Output')
output = inverter_output(output, is_training=True)
#output = tflib.ops.linear.Linear(
# 'Inverter.Output', self.latent_dim * 8, self.z_dim, output)
output = tf.reshape(output, [-1, self.z_dim])
if self.inv_params is None:
self.inv_params = tflib.params_with_name('Inverter')
return output
def train_gen(self, sess, x, z):
_gen_cost, _ = sess.run([self.gen_cost, self.gen_train_op],
feed_dict={self.x: x, self.z: z})
return _gen_cost
def train_dis(self, sess, x, z):
_dis_cost, _ = sess.run([self.dis_cost, self.dis_train_op],
feed_dict={self.x: x, self.z: z})
return _dis_cost
def train_inv(self, sess, x, z):
_inv_cost, _ = sess.run([self.inv_cost, self.inv_train_op],
feed_dict={self.x: x, self.z: z})
return _inv_cost
def generate_from_noise(self, sess, noise, frame):
samples = sess.run(self.x_p, feed_dict={self.z: noise})
for i in range(batch_size):
save_array_as_nifty_volume(samples[i], "examples/img_{0:}.nii.gz".format(n*batch_size + i))
#tflib.save_images.save_images(
# samples.reshape((-1, 28, 28)),
# os.path.join(self.output_path, 'examples/samples_{}.png'.format(frame)))
return samples
def reconstruct_images(self, sess, images, frame):
reconstructions = sess.run(self.rec_x, feed_dict={self.x: images})
comparison = np.zeros((images.shape[0] * 2, images.shape[1]),
dtype=np.float32)
for i in range(images.shape[0]):
comparison[2 * i] = images[i]
comparison[2 * i + 1] = reconstructions[i]
for i in range(batch_size):
save_array_as_nifty_volume(comparison[i], "examples/img_{0:}.nii.gz".format(n*batch_size + i))
#tflib.save_images.save_images(
# comparison.reshape((-1, 28, 28)),
# os.path.join(self.output_path, 'examples/recs_{}.png'.format(frame)))
return comparison
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--z_dim', type=int, default=64, help='dimension of z')
parser.add_argument('--latent_dim', type=int, default=64,
help='latent dimension')
parser.add_argument('--iterations', type=int, default=100000,
help='training steps')
parser.add_argument('--dis_iter', type=int, default=5,
help='discriminator steps')
parser.add_argument('--c_gp_x', type=float, default=10.,
help='coefficient for gradient penalty x')
parser.add_argument('--lamda', type=float, default=.1,
help='coefficient for divergence of z')
parser.add_argument('--output_path', type=str, default='./',
help='output path')
parser.add_argument('-config')
args = parser.parse_args()
config = parse_config(args.config)
config_data = config['data']
print("Loading data...")
# dataset iterator
dataloader = DataLoader(config_data)
dataloader.load_data()
batch_size = config_data['batch_size']
full_data_shape = [batch_size] + config_data['data_shape']
#train_gen, dev_gen, test_gen = tflib.mnist.load(args.batch_size, args.batch_size)
def inf_train_gen():
while True:
train_pair = dataloader.get_subimage_batch()
tempx = train_pair['images']
tempw = train_pair['weights']
tempy = train_pair['labels']
yield tempx, tempw, tempy
#_, _, test_data = tflib.mnist.load_data()
#fixed_images = test_data[0][:32]
#del test_data
tf.set_random_seed(326)
np.random.seed(326)
fixed_noise = np.random.randn(64, args.z_dim)
print("Initializing GAN...")
mnistWganInv = MnistWganInv(
x_dim=full_data_shape, z_dim=args.z_dim, latent_dim=args.latent_dim,
batch_size=batch_size, c_gp_x=args.c_gp_x, lamda=args.lamda,
output_path=args.output_path)
saver = tf.train.Saver(max_to_keep=1000)
with tf.Session() as session:
session.run(tf.global_variables_initializer())
images = noise = gen_cost = dis_cost = inv_cost = None
dis_cost_lst, inv_cost_lst = [], []
print("Starting training...")
for iteration in range(args.iterations):
for i in range(args.dis_iter):
noise = np.random.randn(batch_size, args.z_dim)
images, images_w, images_y = next(inf_train_gen())
dis_cost_lst += [mnistWganInv.train_dis(session, images, noise)]
inv_cost_lst += [mnistWganInv.train_inv(session, images, noise)]
gen_cost = mnistWganInv.train_gen(session, images, noise)
dis_cost = np.mean(dis_cost_lst)
inv_cost = np.mean(inv_cost_lst)
tflib.plot.plot('train gen cost', gen_cost)
tflib.plot.plot('train dis cost', dis_cost)
tflib.plot.plot('train inv cost', inv_cost)
if iteration % 100 == 99:
mnistWganInv.generate_from_noise(session, fixed_noise, iteration)
mnistWganInv.reconstruct_images(session, fixed_images, iteration)
if iteration % 1000 == 999:
save_path = saver.save(session, os.path.join(
args.output_path, 'models/model'), global_step=iteration)
if iteration % 1000 == 999:
dev_dis_cost_lst, dev_inv_cost_lst = [], []
for dev_images, _ in dev_gen():
noise = np.random.randn(batch_size, args.z_dim)
dev_dis_cost, dev_inv_cost = session.run(
[mnistWganInv.dis_cost, mnistWganInv.inv_cost],
feed_dict={mnistWganInv.x: dev_images,
mnistWganInv.z: noise})
dev_dis_cost_lst += [dev_dis_cost]
dev_inv_cost_lst += [dev_inv_cost]
tflib.plot.plot('dev dis cost', np.mean(dev_dis_cost_lst))
tflib.plot.plot('dev inv cost', np.mean(dev_inv_cost_lst))
if iteration < 5 or iteration % 100 == 99:
tflib.plot.flush(os.path.join(args.output_path, 'models'))
tflib.plot.tick()
答案 0 :(得分:0)
您可能正在尝试优化超出计算机可以在内存中处理的参数。减小批次大小是您在正确的轨道上,但是无论好坏,这可能都不是您做错的事情。
每个卷积层都有基于内核宽度,输入层和输出层的参数。这是一篇描述CNN维度分析的文章:https://towardsdatascience.com/understanding-and-calculating-the-number-of-parameters-in-convolution-neural-networks-cnns-fc88790d530d
然而,可能给您带来很多麻烦的是,当您展平所有内容并开始使用完全连接的图层时,必须优化的其他参数数量。当前向量中的每个值都会获得另一个参数,以针对完全连接层中使用的每个节点数进行优化。
如果您的初始图像矢量很大(在您的情况下),则最终将在完全连接的层中以 lot 个参数结束。看来您使用的步幅> 1,因此维数降低了很多。但是,由于您的问题目前仍然存在,因此可能需要一些重型硬件来解决。
一个想法是尝试通过增加合并时的步幅长度来减小输入图像的维数或内部表示的维数。