我试图在数值上评估由几个贝塞尔函数(第一类和第二类)组成的实值被积函数。被积函数是振荡和衰减的,需要在0和+∞之间进行评估。到目前为止,我使用scipy.integrate子包(quad和fixed_quad)的尝试都没有成功。当实际上它应该是平滑的时,评估值会跳跃。对于某些参数值集,我还会收到警告:“IntegrationWarning:积分可能是发散的,或者是慢慢收敛的。”(已知它是收敛的)或“IntegrationWarning:最大值细分数量(50)已经实现。“
等式来自:http://dx.doi.org/10.1029/WR003i001p00241
也可以在这里找到:http://www.aqtesolv.com/papadopu.htm
感谢您在python中对繁琐函数的数值集成提供的任何帮助......
代码示例
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from scipy import special as sps
import scipy.integrate as integrate
# define constants and variables (SI mks units):
r_w = 0.15
r_c = 0.16
b = 10
S_s = 1E-6
Q = 0.001
S = S_s*b
K=1E-8
T=K*b
alpha = (r_w**2)*S/r_c**2
def r_D(r):
return r/r_w
def u(r,t):
return r**2*S/(4*T*t)
def B(beta):
return beta*sps.jv(0,beta) - 2*alpha*sps.jv(1,beta)
def A(beta):
return beta*sps.yn(0,beta) - 2*alpha*sps.yn(1,beta)
def intd_f(beta,r,t):
TOP = (1-np.exp(-beta**2*r_D(r)**2)/(4*u(r,t)))*( sps.jv(0,beta*r_D(r))*A(beta) - sps.yn(0,beta*r_D(r))*B(beta) )
BOT = (A(beta)**2 + B(beta)**2)*beta**2
return TOP/BOT
def s(r,t):
banana = (2*alpha*Q)/(np.pi**2*K*b)
apple = integrate.quad(intd_f, 0, np.inf, args=(r,t))[0]
#apple = integrate.fixed_quad(intd_f, 0, 1E100, args=(r,t))[0] # another option I have tried
return banana*apple
#%% simple example usage...
r=np.arange(1,10,.1)
t=60*60*24*pd.Series([1/24,1,365,3650])
plt.figure()
for tt in t:
print('time=',tt)
snow=[]
for rr in r:
print('r=',rr)
snow.append(s(rr,tt))
plt.subplot(2,1,1)
plt.plot(r,snow,label='t='+str(tt/(60*60*24))+'d')
plt.subplot(2,1,2)
plt.semilogy(r,np.abs(snow))
plt.subplot(2,1,1)
plt.legend()
答案 0 :(得分:3)
我有坏消息:振荡积分必须通过特殊方法处理,例如Filon的方法。通过scipy docs阅读,我认为没办法做到这一点。但是,MPMath显示正是您正在寻找的内容,甚至还提供了使用贝塞尔函数的示例。