我注意到,scipy.special
秩序n和参数x jv(n,x)
的贝塞尔函数在x中被矢量化:
In [14]: import scipy.special as sp
In [16]: sp.jv(1, range(3)) # n=1, [x=0,1,2]
Out[16]: array([ 0., 0.44005059, 0.57672481])
但是没有相应的矢量化形式的球形贝塞尔函数,sp.sph_jn
:
In [19]: sp.sph_jn(1,range(3))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-19-ea59d2f45497> in <module>()
----> 1 sp.sph_jn(1,range(3)) #n=1, 3 value array
/home/glue/anaconda/envs/fibersim/lib/python2.7/site-packages/scipy/special/basic.pyc in sph_jn(n, z)
262 """
263 if not (isscalar(n) and isscalar(z)):
--> 264 raise ValueError("arguments must be scalars.")
265 if (n != floor(n)) or (n < 0):
266 raise ValueError("n must be a non-negative integer.")
ValueError: arguments must be scalars.
此外,球形贝塞尔函数一次计算N的所有阶数。因此,如果我想要参数n=5
的{{1}}贝塞尔函数,则返回n = 1,2,3,4,5。它实际上在一次传递中返回jn及其衍生物:
x=10
为什么这种不对称存在于API中,并且有没有人知道一个库将返回矢量化的球形贝塞尔函数,或者至少更快(即在cython中)?
答案 0 :(得分:4)
您可以编写一个cython函数来加速计算,首先要做的是获取fortran函数SPHJ
的地址,这里是如何在Python中执行此操作:
from scipy import special as sp
sphj = sp.specfun.sphj
import ctypes
addr = ctypes.pythonapi.PyCObject_AsVoidPtr(ctypes.py_object(sphj._cpointer))
然后你可以直接在Cython中调用fortran函数,注意我使用prange()
来使用多核来加速计算:
%%cython -c-Ofast -c-fopenmp --link-args=-fopenmp
from cpython.mem cimport PyMem_Malloc, PyMem_Free
from cython.parallel import prange
import numpy as np
import cython
from cpython cimport PyCObject_AsVoidPtr
from scipy import special
ctypedef void (*sphj_ptr) (const int *n, const double *x,
const int *nm, const double *sj, const double *dj) nogil
cdef sphj_ptr _sphj=<sphj_ptr>PyCObject_AsVoidPtr(special.specfun.sphj._cpointer)
@cython.wraparound(False)
@cython.boundscheck(False)
def cython_sphj2(int n, double[::1] x):
cdef int count = x.shape[0]
cdef double * sj = <double *>PyMem_Malloc(count * sizeof(double) * (n + 1))
cdef double * dj = <double *>PyMem_Malloc(count * sizeof(double) * (n + 1))
cdef int * mn = <int *>PyMem_Malloc(count * sizeof(int))
cdef double[::1] res = np.empty(count)
cdef int i
if count < 100:
for i in range(x.shape[0]):
_sphj(&n, &x[i], mn + i, sj + i*(n+1), dj + i*(n+1))
res[i] = sj[i*(n+1) + n] #choose the element you want here
else:
for i in prange(count, nogil=True):
_sphj(&n, &x[i], mn + i, sj + i*(n+1), dj + i*(n+1))
res[i] = sj[i*(n+1) + n] #choose the element you want here
PyMem_Free(sj)
PyMem_Free(dj)
PyMem_Free(mn)
return res.base
比较一下,这是在forloop中调用sphj()
的Python函数:
import numpy as np
def python_sphj(n, x):
sphj = special.specfun.sphj
res = np.array([sphj(n, v)[1][n] for v in x])
return res
以下是10个元素的%timit结果:
x = np.linspace(1, 2, 10)
r1 = cython_sphj2(4, x)
r2 = python_sphj(4, x)
assert np.allclose(r1, r2)
%timeit cython_sphj2(4, x)
%timeit python_sphj(4, x)
结果:
10000 loops, best of 3: 21.5 µs per loop
10000 loops, best of 3: 28.1 µs per loop
以下是100000个元素的结果:
x = np.linspace(1, 2, 100000)
r1 = cython_sphj2(4, x)
r2 = python_sphj(4, x)
assert np.allclose(r1, r2)
%timeit cython_sphj2(4, x)
%timeit python_sphj(4, x)
结果:
10 loops, best of 3: 44.7 ms per loop
1 loops, best of 3: 231 ms per loop
答案 1 :(得分:3)
如果有人仍然感兴趣,我发现一个解决方案比Ted Pudlik的解决方案快了近17倍。我使用了这样一个事实,即n阶球面贝塞尔函数基本上是n + 1/2阶标准贝塞尔函数的1 / sqrt(x)倍,它已经被矢量化了:
import numpy as np
from scipy import special
sphj_bessel = lambda n, z: special.jv(n+1/2,z)*np.sqrt(np.pi/2)/(np.sqrt(z))
我得到了以下时间:
%timeit sphj_vectorize(2, x) # x = np.linspace(1, 2, 10**5)
1 loops, best of 3: 759 ms per loop
%timeit sphj_bessel(2,x) # x = np.linspace(1, 2, 10**5)
10 loops, best of 3: 44.6 ms per loop
答案 2 :(得分:1)
有一个pull request将矢量化球形Bessel函数例程合并到SciPy中scipy.special.spherical_x
,x = jn, yn, in, kn
。运气不错,他们应该把它变成版本0.18.0。
np.vectorize
以上的性能提升(即for-loop)取决于函数,但可能是数量级。
import numpy as np
from scipy import special
@np.vectorize
def sphj_vectorize(n, z):
return special.sph_jn(n, z)[0][-1]
x = np.linspace(1, 2, 10**5)
%timeit sphj_vectorize(4, x)
1 loops, best of 3: 1.47 s per loop
%timeit special.spherical_jn(4, x)
100 loops, best of 3: 8.07 ms per loop