如何使用&使用mGJR()

时间:2017-11-07 17:49:57

标签: r output time-series coefficients interpretation

我正在使用来自R的mGJR()命令的双变量GJR模型。

来自“mgarchBEKK”包的说明我输入第一个时间序列,第二个时间序列,等等。我试图使用意外的返回作为我的输入,并需要这些系数。

我以为我需要输入我预先计算的意外回报作为我的第一个时间序列,第二个时间序列等等到我的模型中。

然而,当我运行mGJR()时,它会输出“$ resid1”和“$ resid2”的输出,它看起来像我一直在寻找的残差(即意外的回报)。

  1. 如果是这样,我是否需要输入退货而不是意外退货到模型中以自动导出意外退货?

  2. 此外,如果我尝试使用从我的输出中导出的系数来描述它,我的双变量GJR GARCH模型如何? 如何从我下面的长输出中获得我需要的模型系数? 具体来说,我发现我总共有17个系数,其中一个系数为零。我发现这些系数按4分组,其中最后一个只剩下一个 例如,我发现$ est.params $ 1,$ est.params $ 2,$ est.params $ 3,$ est.params $ 4,$ est.params $ 5其中共有17个参数。 但是,我不确定这些在数学上是如何在正式的双变量GJR GARCH公式中明确表达的。

  3. 请注意,这是“双变量”GJR GARCH,而不仅仅是GJR GARCH。因此,我有17个参数,其中我有4个块,每个块有4个系数加一个参数使它总共17个。但是,我不知道哪个参数对应于哪个变量系数。我试图提供尽可能多的信息,但如果需要澄清,请告诉我。

    我使用预期回报获得的输出如下:

      

    mGJR(eps1,eps2,order = c(1,1,1))

        Warning: initial values for the parameters are set at:
                 2 0 2 0.4 0.1 0.1 0.4 0.4 0.1 0.1 0.4 0.1 0.1 0.1 0.1 0.5 
        Starting estimation process via loglikelihood function implemented in C.
        Optimization Method is ' BFGS '
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        H IS SINGULAR!...
        Estimation process completed.
        Starting diagnostics...
        Calculating estimated:
         1. residuals,
         2. correlations,
         3. standard deviations,
         4. eigenvalues.
        Diagnostics ended...
        Class attributes are ready via following names:
        eps1 eps2 series.length estimation.time total.time order estimation aic asy.se.coef est.params cor sd1 sd2 H.estimated eigenvalues uncond.cov.matrix resid1 resid2 
        $eps1
         [1] -0.002605971  0.110882333 -0.148960989 -0.068514869 -0.003755887
         [6]  0.010796054 -0.147830267  0.047830346  0.028587561  0.003945359
        [11]  0.082094667 -0.027768830 -0.006713995  0.024364330 -0.012109627
        [16] -0.018345875  0.025668553  0.004490535  0.017510124  0.027143473
        [21]  0.011606530  0.010522457  0.026053738  0.009380949 -0.070996648
        [26]  0.020755072 -0.005830603  0.014289265 -0.000418889  0.022697292
        [31]  0.023063329  0.005635615  0.049926161  0.013989454  0.019870327
        [36]  0.018279627  0.014478743 -0.002177036  0.024635614  0.050726032
        [41] -0.004392337  0.001234857 -0.018066777 -0.054437778  0.010428982
        [46] -0.082777078  0.127812102  0.008940764 -0.001295593  0.060328122
        [51] -0.009104799 -0.007204478  0.045631975  0.023096514  0.010598574
        [56]  0.016541977 -0.011387952 -0.038157908  0.010327360  0.044342365
        [61]  0.035077460  0.017492338  0.038596692  0.137205423 -0.004735584
        [66]  0.104792896  0.036139814 -0.096482047 -0.000561027 -0.002632458
        [71]  0.016177144  0.025230196  0.031753168  0.068971843  0.054021759
        [76]  0.027263191 -0.025345373  0.033643409 -0.060322431  0.030377924
        [81] -0.069716766 -0.089266804
    
        $eps2
         [1] -0.002889166  0.003033355 -0.002152031  0.003236581  0.003236581
         [6] -0.001602802  0.004961099 -0.003176289 -0.000264979 -0.000264979
        [11] -0.000264979 -0.001112752  0.004795299  0.004795299  0.005683859
        [16]  0.007793699  0.001613168 -0.000354773  0.001350773 -0.000303199
        [21]  0.009337753  0.009337753  0.001886769 -0.001791025  0.005869744
        [26]  0.004795546  0.004795546  0.004509183  0.005226653  0.000383686
        [31]  0.000207546  0.000207546  0.000207546  0.001570381  0.001669796
        [36]  0.000549576  0.000549576 -0.001210093  0.014468461 -0.005345880
        [41]  0.000130449  0.000130449 -0.001412638 -0.003304416  0.000117946
        [46]  0.002145056  0.002145056 -0.002114632  0.005395410 -0.003153774
        [51]  0.001888270 -0.001988031  0.000716514 -0.000331566 -0.000331566
        [56] -0.000325350 -0.002882419 -0.006754058 -0.006754058 -0.001131800
        [61] -0.017930260  0.002718202  0.006840023  0.006840023  0.002059632
        [66]  0.003552300  0.003350965 -0.000126651 -0.000126651 -0.000126651
        [71] -0.000990530  0.006430433  0.002933145  0.002933145 -0.002259438
        [76]  0.001770744  0.000417412  0.004213458  0.004213458  0.004360485
        [81]  0.002158630 -0.000686097
    
        $series.length
        [1] 82
    
        $estimation.time
        Time difference of 0.109386 secs
    
        $total.time
        Time difference of 0.1562669 secs
    
        $order
        GARCH component  ARCH component   HJR component 
                      1               1               1 
    
        $estimation
        $estimation$par
         [1] -3.902944e-02 -2.045331e-05 -4.296356e-03  2.268312e-01  2.111034e+00
         [6]  1.350601e-04  1.252329e-01 -3.143425e-01 -1.538355e-02 -5.587068e-03
        [11] -1.628474e-04  4.224089e-01  1.025256e-01 -7.414033e-03 -4.869328e-01
        [16] -1.102507e+00
    
        $estimation$value
        [1] -459.6969
    
        $estimation$counts
        function gradient 
             278       53 
    
        $estimation$convergence
        [1] 0
    
        $estimation$message
        NULL
    
        $estimation$hessian
                       [,1]          [,2]          [,3]          [,4]          [,5]
         [1,]  77991.191735  -27033.70607 -1.895287e+03 -655.73521140 -6.727215e+01
         [2,] -27033.706072 3337349.78552 -3.369295e+05 -371.07738150 -1.447052e+02
         [3,]  -1895.286899 -336929.51987  1.109169e+07 -122.26145691 -5.595868e+00
         [4,]   -655.735211    -371.07738 -1.222615e+02   18.61522485 -1.311354e-02
         [5,]    -67.272152    -144.70520 -5.595868e+00   -0.01311354  3.109780e-01
         [6,]     20.487872  -18111.17773  3.525887e+03   -5.52437237 -8.751496e-02
         [7,]    -26.898108   -2073.43486 -2.975629e+03   -0.26691407 -3.916406e-01
         [8,]   1477.726124     320.50607 -4.807709e+02   -9.98402142 -9.782072e-01
         [9,]      9.388141     -27.62368 -5.331019e+01   -0.16106385 -1.537450e-02
        [10,]   -179.429796   49000.01743  2.023153e+04    7.66772695  1.378254e+00
        [11,]     16.757240     -87.91362  2.360375e+03    0.23119576  7.084715e-02
        [12,]   -317.440585     -56.15303  3.710999e+01    6.57357184 -1.785094e-01
        [13,]      3.793978      98.71583 -1.142264e+01   -0.22870343  1.543862e-02
        [14,]   -146.123961   -9829.15416 -5.196531e+02  -29.62565159  4.260863e-01
        [15,]     18.082524     131.52060  3.398486e+03    0.33823287  3.212786e-02
        [16,]     11.460530    -240.54059  6.706526e+02    0.32655416 -4.680544e-03
                       [,6]          [,7]         [,8]          [,9]        [,10]
         [1,]  2.048787e+01   -26.8981081 1477.7261235    9.38814077  -179.429796
         [2,] -1.811118e+04 -2073.4348620  320.5060742  -27.62367781 49000.017430
         [3,]  3.525887e+03 -2975.6287124 -480.7709387  -53.31018730 20231.529905
         [4,] -5.524372e+00    -0.2669141   -9.9840214   -0.16106385     7.667727
         [5,] -8.751496e-02    -0.3916406   -0.9782072   -0.01537450     1.378254
         [6,]  4.340038e+03    72.0221887   23.7403796    4.74321851  -479.279271
         [7,]  7.202219e+01    22.5064989   -0.6280896    0.21674046   -44.382358
         [8,]  2.374038e+01    -0.6280896  123.3928335    2.05555317   -53.354577
         [9,]  4.743219e+00     0.2167405    2.0555532   20.53760214    53.165201
        [10,] -4.792793e+02   -44.3823578  -53.3545766   53.16520102 17583.612011
        [11,] -2.045612e+00     1.0454365   38.9154805 -823.29002882 -1763.407498
        [12,] -1.488681e+01    -0.5717977   -6.3888226   -0.05658090   -21.965231
        [13,] -4.554201e-01    -0.2556849    0.1795778    0.01041940     1.602574
        [14,]  2.372186e+02   -13.7297349   13.5989185   -1.51829772  -127.664692
        [15,] -1.372792e+01    -1.3537030    0.4896836    0.05291901    12.398407
        [16,] -2.586931e+00    -0.1781386    0.1308570    0.05498165    -7.648387
                      [,11]        [,12]        [,13]         [,14]         [,15]
         [1,]  1.675724e+01 -317.4405852   3.79397825  -146.1239612   18.08252377
         [2,] -8.791362e+01  -56.1530304  98.71583141 -9829.1541554  131.52059520
         [3,]  2.360375e+03   37.1099898 -11.42263544  -519.6531079 3398.48583556
         [4,]  2.311958e-01    6.5735718  -0.22870343   -29.6256516    0.33823287
         [5,]  7.084715e-02   -0.1785094   0.01543862     0.4260863    0.03212786
         [6,] -2.045612e+00  -14.8868094  -0.45542005   237.2185632  -13.72791768
         [7,]  1.045436e+00   -0.5717977  -0.25568491   -13.7297349   -1.35370300
         [8,]  3.891548e+01   -6.3888226   0.17957777    13.5989185    0.48968359
         [9,] -8.232900e+02   -0.0565809   0.01041940    -1.5182977    0.05291901
        [10,] -1.763407e+03  -21.9652313   1.60257372  -127.6646916   12.39840658
        [11,]  4.214986e+04   -0.0719787   0.06153061   -11.5769904    1.70462536
        [12,] -7.197870e-02   18.7268970  -0.46324902   -16.1849665    1.23612627
        [13,]  6.153061e-02   -0.4632490   0.12685032     1.2327783   -0.20692983
        [14,] -1.157699e+01  -16.1849665   1.23277827  3180.7362850  -40.24439774
        [15,]  1.704625e+00    1.2361263  -0.20692983   -40.2443977    9.65359055
        [16,] -1.608423e-01   -0.4136609   0.07688678    13.4226923    0.70015741
                      [,16]
         [1,]  1.146053e+01
         [2,] -2.405406e+02
         [3,]  6.706526e+02
         [4,]  3.265542e-01
         [5,] -4.680544e-03
         [6,] -2.586931e+00
         [7,] -1.781386e-01
         [8,]  1.308570e-01
         [9,]  5.498165e-02
        [10,] -7.648387e+00
        [11,] -1.608423e-01
        [12,] -4.136609e-01
        [13,]  7.688678e-02
        [14,]  1.342269e+01
        [15,]  7.001574e-01
        [16,]  2.609256e+00
    
    
        $aic
        [1] -443.6969
    
        $asy.se.coef
        $asy.se.coef[[1]]
                    [,1]         [,2]
        [1,] 0.005951115 0.0006300630
        [2,] 0.000000000 0.0003293308
    
        $asy.se.coef[[2]]
                  [,1]       [,2]
        [1,] 0.3150396 0.01581263
        [2,] 2.3065406 0.24110204
    
        $asy.se.coef[[3]]
                  [,1]        [,2]
        [1,] 0.1049158 0.007811719
        [2,] 0.4800751 0.010559776
    
        $asy.se.coef[[4]]
                  [,1]       [,2]
        [1,] 0.2626887 0.01915952
        [2,] 3.1255330 0.36661918
    
        $asy.se.coef[[5]]
        [1] 0.6559587
    
    
        $est.params
        $est.params$`1`
                    [,1]          [,2]
        [1,] -0.03902944 -2.045331e-05
        [2,]  0.00000000 -4.296356e-03
    
        $est.params$`2`
                  [,1]         [,2]
        [1,] 0.2268312 0.0001350601
        [2,] 2.1110340 0.1252329455
    
        $est.params$`3`
                    [,1]          [,2]
        [1,] -0.31434246 -0.0055870676
        [2,] -0.01538355 -0.0001628474
    
        $est.params$`4`
                  [,1]         [,2]
        [1,] 0.4224089 -0.007414033
        [2,] 0.1025256 -0.486932758
    
        $est.params$`5`
        [1] -1.102507
    
    
        $cor
         [1]           NA  0.031402656  0.058089044 -0.283965989  0.160141195
         [6]  0.053237600  0.024081209  0.199587984  0.050169828  0.024045688
        [11]  0.022017308  0.015292008 -0.015322752  0.070343728  0.060106129
        [16]  0.104828553  0.165459125  0.030923632  0.022277698  0.026315363
        [21]  0.020411283  0.102018250  0.102516847  0.035770620  0.024838651
        [26]  0.274964544  0.063922572  0.067181338  0.051522997  0.051263760
        [31]  0.023492076  0.022088161  0.021845645  0.021179838  0.028180317
        [36]  0.028967267  0.023372747  0.022865880  0.020896186  0.180173786
        [41]  0.034766653  0.022790880  0.021499773 -0.005938808 -0.137011386
        [46]  0.029587448  0.062026969  0.053761176  0.036707465  0.054668898
        [51]  0.009740057  0.040966003  0.012100219  0.024982728  0.021599599
        [56]  0.021286712  0.020662963 -0.000403477 -0.118423344  0.080086394
        [61]  0.017643159  0.287047099  0.043052577  0.095924672  0.129103089
        [66]  0.052969944  0.066284046  0.055521350 -0.095508217  0.040009553
        [71]  0.022822525  0.020620174  0.080723033  0.044702009  0.051760071
        [76]  0.015962034  0.031439947  0.021103665  0.057557712  0.184430145
        [81]  0.061929502  0.074235107
    
        $sd1
         [1]         NA 0.04250885 0.05256355 0.08452372 0.05574627 0.04322082
         [7] 0.04134005 0.07735273 0.04624463 0.04210977 0.04121545 0.04524121
        [13] 0.04400240 0.04235476 0.04419338 0.04269033 0.04362228 0.04244062
        [19] 0.04124873 0.04171567 0.04157849 0.04691775 0.04729332 0.04297800
        [25] 0.04133609 0.05057450 0.04475342 0.04245633 0.04322428 0.04275222
        [31] 0.04173813 0.04159489 0.04119978 0.04290491 0.04182107 0.04199520
        [37] 0.04156416 0.04141240 0.04126752 0.05496396 0.04274670 0.04132509
        [43] 0.04113889 0.04241273 0.05098749 0.04227554 0.05554117 0.05507267
        [49] 0.04276771 0.04274602 0.04200447 0.04140829 0.04167090 0.04296412
        [55] 0.04157519 0.04119998 0.04124952 0.04231602 0.04991076 0.04371888
        [61] 0.04217155 0.05092909 0.04333244 0.04758239 0.06275051 0.04389357
        [67] 0.05246204 0.04515198 0.06193409 0.04361523 0.04139218 0.04118088
        [73] 0.04553376 0.04376651 0.04708736 0.04252185 0.04248968 0.04285559
        [79] 0.04458945 0.04858689 0.04500212 0.05183762
    
        $sd2
         [1]          NA 0.004482407 0.004338972 0.004809936 0.004467527 0.004585295
         [7] 0.004308208 0.004536616 0.004338359 0.004304288 0.004302985 0.004303282
        [13] 0.004368628 0.004897167 0.004391425 0.005115556 0.005729580 0.004312162
        [19] 0.004303200 0.004308760 0.004302868 0.004976847 0.005020608 0.004316566
        [25] 0.004309195 0.004939797 0.004398925 0.004894407 0.004397014 0.004840029
        [31] 0.004303750 0.004303055 0.004302843 0.004303352 0.004311628 0.004312208
        [37] 0.004303962 0.004303769 0.004340892 0.005536457 0.004364419 0.004303177
        [43] 0.004302664 0.004381032 0.004754002 0.004305919 0.004331610 0.004329750
        [49] 0.004315664 0.004919065 0.004322781 0.004392385 0.004419426 0.004305283
        [55] 0.004303278 0.004302883 0.004302743 0.004548148 0.005589150 0.004407496
        [61] 0.004305608 0.004895706 0.004332758 0.004476358 0.004463722 0.004425254
        [67] 0.004349885 0.004344478 0.004371742 0.004310808 0.004304083 0.004304599
        [73] 0.004475105 0.004333152 0.004333715 0.004314340 0.004313605 0.004303264
        [79] 0.004365063 0.004618021 0.004372850 0.004343962
    
        $H.estimated
        , , 1
    
                     [,1]         [,2]
        [1,] 2.398788e-03 6.043323e-06
        [2,] 6.043323e-06 1.742282e-05
    
        , , 2
    
                     [,1]         [,2]
        [1,] 1.807002e-03 5.983524e-06
        [2,] 5.983524e-06 2.009197e-05
    
        , , 3
    
                     [,1]         [,2]
        [1,] 2.762927e-03 1.324847e-05
        [2,] 1.324847e-05 1.882667e-05
    
        , , 4
    
                      [,1]          [,2]
        [1,]  0.0071442584 -1.154474e-04
        [2,] -0.0001154474  2.313548e-05
    
        , , 5
    
                     [,1]         [,2]
        [1,] 3.107646e-03 3.988284e-05
        [2,] 3.988284e-05 1.995880e-05
    
        , , 6
    
                     [,1]         [,2]
        [1,] 1.868039e-03 1.055064e-05
        [2,] 1.055064e-05 2.102493e-05
    
        , , 7
    
                     [,1]         [,2]
        [1,] 1.709000e-03 4.288901e-06
        [2,] 4.288901e-06 1.856066e-05
    
        , , 8
    
                     [,1]         [,2]
        [1,] 5.983444e-03 7.003934e-05
        [2,] 7.003934e-05 2.058089e-05
    
        , , 9
    
                     [,1]         [,2]
        [1,] 2.138566e-03 1.006536e-05
        [2,] 1.006536e-05 1.882135e-05
    
        , , 10
    
                     [,1]         [,2]
        [1,] 1.773233e-03 4.358343e-06
        [2,] 4.358343e-06 1.852689e-05
    
        , , 11
    
                     [,1]         [,2]
        [1,] 1.698713e-03 3.904758e-06
        [2,] 3.904758e-06 1.851568e-05
    
        , , 12
    
                     [,1]         [,2]
        [1,] 2.046767e-03 2.977135e-06
        [2,] 2.977135e-06 1.851824e-05
    
        , , 13
    
                      [,1]          [,2]
        [1,]  1.936211e-03 -2.945494e-06
        [2,] -2.945494e-06  1.908491e-05
    
        , , 14
    
                     [,1]         [,2]
        [1,] 1.793925e-03 1.459058e-05
        [2,] 1.459058e-05 2.398224e-05
    
        , , 15
    
                     [,1]         [,2]
        [1,] 1.953055e-03 1.166491e-05
        [2,] 1.166491e-05 1.928461e-05
    
        , , 16
    
                     [,1]         [,2]
        [1,] 1.822465e-03 2.289296e-05
        [2,] 2.289296e-05 2.616891e-05
    
        , , 17
    
                     [,1]         [,2]
        [1,] 1.902904e-03 4.135442e-05
        [2,] 4.135442e-05 3.282809e-05
    
        , , 18
    
                     [,1]         [,2]
        [1,] 1.801206e-03 5.659359e-06
        [2,] 5.659359e-06 1.859474e-05
    
        , , 19
    
                     [,1]         [,2]
        [1,] 1.701457e-03 3.954325e-06
        [2,] 3.954325e-06 1.851753e-05
    
        , , 20
    
                     [,1]         [,2]
        [1,] 1.740197e-03 4.729997e-06
        [2,] 4.729997e-06 1.856541e-05
    
        , , 21
    
                     [,1]         [,2]
        [1,] 1.728771e-03 3.651716e-06
        [2,] 3.651716e-06 1.851467e-05
    
        , , 22
    
                     [,1]         [,2]
        [1,] 2.201275e-03 2.382151e-05
        [2,] 2.382151e-05 2.476901e-05
    
        , , 23
    
                     [,1]         [,2]
        [1,] 2.236658e-03 2.434172e-05
        [2,] 2.434172e-05 2.520650e-05
    
        , , 24
    
                     [,1]         [,2]
        [1,] 1.847108e-03 6.636071e-06
        [2,] 6.636071e-06 1.863274e-05
    
        , , 25
    
                     [,1]         [,2]
        [1,] 1.708672e-03 4.424391e-06
        [2,] 4.424391e-06 1.856916e-05
    
        , , 26
    
                     [,1]         [,2]
        [1,] 2.557780e-03 6.869377e-05
        [2,] 6.869377e-05 2.440159e-05
    
        , , 27
    
                     [,1]         [,2]
        [1,] 2.002868e-03 1.258424e-05
        [2,] 1.258424e-05 1.935054e-05
    
        , , 28
    
                     [,1]         [,2]
        [1,] 1.802540e-03 1.396019e-05
        [2,] 1.396019e-05 2.395522e-05
    
        , , 29
    
                     [,1]         [,2]
        [1,] 1.868338e-03 9.792344e-06
        [2,] 9.792344e-06 1.933373e-05
    
        , , 30
    
                     [,1]         [,2]
        [1,] 0.0018277521 1.060760e-05
        [2,] 0.0000106076 2.342588e-05
    
        , , 31
    
                     [,1]         [,2]
        [1,] 1.742072e-03 4.219893e-06
        [2,] 4.219893e-06 1.852227e-05
    
        , , 32
    
                     [,1]         [,2]
        [1,] 1.730135e-03 3.953452e-06
        [2,] 3.953452e-06 1.851628e-05
    
        , , 33
    
                     [,1]         [,2]
        [1,] 1.697422e-03 3.872712e-06
        [2,] 3.872712e-06 1.851446e-05
    
        , , 34
    
                     [,1]         [,2]
        [1,] 1.840831e-03 3.910538e-06
        [2,] 3.910538e-06 1.851884e-05
    
        , , 35
    
                     [,1]         [,2]
        [1,] 1.749002e-03 5.081388e-06
        [2,] 5.081388e-06 1.859014e-05
    
        , , 36
    
                     [,1]         [,2]
        [1,] 1.763597e-03 5.245741e-06
        [2,] 5.245741e-06 1.859513e-05
    
        , , 37
    
                     [,1]         [,2]
        [1,] 1.727580e-03 4.181164e-06
        [2,] 4.181164e-06 1.852409e-05
    
        , , 38
    
                     [,1]         [,2]
        [1,] 1.714987e-03 4.075372e-06
        [2,] 4.075372e-06 1.852243e-05
    
        , , 39
    
                     [,1]         [,2]
        [1,] 1.703008e-03 3.743298e-06
        [2,] 3.743298e-06 1.884335e-05
    
        , , 40
    
                     [,1]         [,2]
        [1,] 3.021037e-03 5.482789e-05
        [2,] 5.482789e-05 3.065235e-05
    
        , , 41
    
                     [,1]         [,2]
        [1,] 1.827281e-03 6.486224e-06
        [2,] 6.486224e-06 1.904815e-05
    
        , , 42
    
                     [,1]         [,2]
        [1,] 1.707763e-03 4.052884e-06
        [2,] 4.052884e-06 1.851733e-05
    
        , , 43
    
                     [,1]         [,2]
        [1,] 1.692408e-03 3.805606e-06
        [2,] 3.805606e-06 1.851292e-05
    
        , , 44
    
                      [,1]          [,2]
        [1,]  1.798840e-03 -1.103499e-06
        [2,] -1.103499e-06  1.919344e-05
    
        , , 45
    
                      [,1]          [,2]
        [1,]  2.599725e-03 -3.321083e-05
        [2,] -3.321083e-05  2.260054e-05
    
        , , 46
    
                     [,1]         [,2]
        [1,] 1.787221e-03 5.385952e-06
        [2,] 5.385952e-06 1.854093e-05
    
        , , 47
    
                     [,1]         [,2]
        [1,] 3.084822e-03 1.492262e-05
        [2,] 1.492262e-05 1.876285e-05
    
        , , 48
    
                     [,1]         [,2]
        [1,] 0.0030329985 1.281940e-05
        [2,] 0.0000128194 1.874673e-05
    
        , , 49
    
                     [,1]         [,2]
        [1,] 1.829077e-03 6.775136e-06
        [2,] 6.775136e-06 1.862496e-05
    
        , , 50
    
                     [,1]         [,2]
        [1,] 1.827222e-03 1.149525e-05
        [2,] 1.149525e-05 2.419720e-05
    
        , , 51
    
                     [,1]         [,2]
        [1,] 1.764375e-03 1.768562e-06
        [2,] 1.768562e-06 1.868643e-05
    
        , , 52
    
                     [,1]         [,2]
        [1,] 1.714646e-03 7.450944e-06
        [2,] 7.450944e-06 1.929305e-05
    
        , , 53
    
                     [,1]         [,2]
        [1,] 1.736464e-03 2.228394e-06
        [2,] 2.228394e-06 1.953133e-05
    
        , , 54
    
                     [,1]         [,2]
        [1,] 1.845916e-03 4.621122e-06
        [2,] 4.621122e-06 1.853546e-05
    
        , , 55
    
                     [,1]         [,2]
        [1,] 1.728496e-03 3.864375e-06
        [2,] 3.864375e-06 1.851820e-05
    
        , , 56
    
                     [,1]         [,2]
        [1,] 1.697438e-03 3.773681e-06
        [2,] 3.773681e-06 1.851481e-05
    
        , , 57
    
                     [,1]         [,2]
        [1,] 1.701523e-03 3.667388e-06
        [2,] 3.667388e-06 1.851360e-05
    
        , , 58
    
                      [,1]          [,2]
        [1,]  1.790646e-03 -7.765298e-08
        [2,] -7.765298e-08  2.068565e-05
    
        , , 59
    
                      [,1]          [,2]
        [1,]  2.491084e-03 -3.303522e-05
        [2,] -3.303522e-05  3.123859e-05
    
        , , 60
    
                     [,1]         [,2]
        [1,] 1.911341e-03 1.543191e-05
        [2,] 1.543191e-05 1.942602e-05
    
        , , 61
    
                     [,1]         [,2]
        [1,] 1.778439e-03 3.203542e-06
        [2,] 3.203542e-06 1.853826e-05
    
        , , 62
    
                     [,1]         [,2]
        [1,] 2.593772e-03 7.157055e-05
        [2,] 7.157055e-05 2.396793e-05
    
        , , 63
    
                     [,1]         [,2]
        [1,] 1.877700e-03 8.083078e-06
        [2,] 8.083078e-06 1.877280e-05
    
        , , 64
    
                     [,1]         [,2]
        [1,] 2.264084e-03 2.043155e-05
        [2,] 2.043155e-05 2.003778e-05
    
        , , 65
    
                     [,1]         [,2]
        [1,] 3.937627e-03 3.616188e-05
        [2,] 3.616188e-05 1.992481e-05
    
        , , 66
    
                     [,1]         [,2]
        [1,] 1.926645e-03 1.028889e-05
        [2,] 1.028889e-05 1.958287e-05
    
        , , 67
    
                     [,1]         [,2]
        [1,] 2.752265e-03 1.512627e-05
        [2,] 1.512627e-05 1.892150e-05
    
        , , 68
    
                     [,1]         [,2]
        [1,] 2.038701e-03 1.089117e-05
        [2,] 1.089117e-05 1.887449e-05
    
        , , 69
    
                      [,1]          [,2]
        [1,]  3.835832e-03 -2.585979e-05
        [2,] -2.585979e-05  1.911213e-05
    
        , , 70
    
                     [,1]         [,2]
        [1,] 1.902289e-03 7.522472e-06
        [2,] 7.522472e-06 1.858307e-05
    
        , , 71
    
                     [,1]         [,2]
        [1,] 1.713313e-03 4.065956e-06
        [2,] 4.065956e-06 1.852513e-05
    
        , , 72
    
                     [,1]         [,2]
        [1,] 1.695865e-03 3.655281e-06
        [2,] 3.655281e-06 1.852958e-05
    
        , , 73
    
                     [,1]         [,2]
        [1,] 0.0020733237 1.644880e-05
        [2,] 0.0000164488 2.002657e-05
    
        , , 74
    
                     [,1]         [,2]
        [1,] 0.0019155075 8.477600e-06
        [2,] 0.0000084776 1.877621e-05
    
        , , 75
    
                     [,1]         [,2]
        [1,] 2.217220e-03 1.056233e-05
        [2,] 1.056233e-05 1.878109e-05
    
        , , 76
    
                     [,1]         [,2]
        [1,] 1.808108e-03 2.928295e-06
        [2,] 2.928295e-06 1.861353e-05
    
        , , 77
    
                     [,1]         [,2]
        [1,] 1.805373e-03 5.762429e-06
        [2,] 5.762429e-06 1.860719e-05
    
        , , 78
    
                     [,1]         [,2]
        [1,] 1.836602e-03 3.891915e-06
        [2,] 3.891915e-06 1.851808e-05
    
        , , 79
    
                     [,1]         [,2]
        [1,] 1.988219e-03 1.120279e-05
        [2,] 1.120279e-05 1.905377e-05
    
        , , 80
    
                     [,1]         [,2]
        [1,] 2.360685e-03 4.138156e-05
        [2,] 4.138156e-05 2.132612e-05
    
        , , 81
    
                     [,1]         [,2]
        [1,] 2.025191e-03 1.218695e-05
        [2,] 1.218695e-05 1.912182e-05
    
        , , 82
    
                     [,1]         [,2]
        [1,] 2.687139e-03 1.671631e-05
        [2,] 1.671631e-05 1.887001e-05
    
    
        $eigenvalues
        [1] 4.55569683 0.22879456 0.17683774 0.01426322
    
        $uncond.cov.matrix
                    [,1]        [,2]
        [1,] 0.002266730 0.001058754
        [2,] 0.001058754 0.014184073
    
        $resid1
         [1]  0.000000000  2.606658633 -2.832423405 -0.803429943 -0.076228015
         [6]  0.251640690 -3.578761931  0.627605808  0.618572249  0.093834350
        [11]  1.992057160 -0.613463505 -0.151066326  0.568366658 -0.281145635
        [16] -0.447418119  0.584725959  0.106051164  0.423859148  0.650891694
        [21]  0.275002848  0.206027474  0.547710301  0.219653206 -1.720836929
        [26]  0.388360723 -0.136578900  0.330299607 -0.015356362  0.530624264
        [31]  0.552493411  0.135394145  1.211759017  0.325365217  0.474140365
        [36]  0.434967460  0.348083690 -0.051966703  0.590366618  0.941768811
        [41] -0.102859959  0.029817748 -0.438515201 -1.283947967  0.205149728
        [46] -1.959551678  2.299605523  0.164294634 -0.034506773  1.415352264
        [51] -0.217156708 -0.172233261  1.094882761  0.537781247  0.255092253
        [56]  0.401673126 -0.274777615 -0.901794851  0.192673354  1.016721711
        [61]  0.838610788  0.331314439  0.884670384  2.873061672 -0.079539903
        [66]  2.384117962  0.685180049 -2.137240072 -0.009247067 -0.060258875
        [71]  0.391339172  0.609775354  0.692992830  1.573446856  1.149792694
        [76]  0.640567944 -0.596838960  0.783185773 -1.358186376  0.611629203
        [81] -1.552405453 -1.721844943
    
        $resid2
         [1]  0.00000000  0.60291683 -0.34446882  0.47408464  0.74401685 -0.36208567
         [7]  1.22988753 -0.83357295 -0.08954723 -0.06362390 -0.10131479 -0.25004018
        [13]  1.09566787  0.94523475  1.31164457  1.57234641  0.19804905 -0.08528340
        [19]  0.30541107 -0.08591785  2.16540690  1.86518502  0.32642704 -0.42228251
        [25]  1.40120757  0.90215659  1.09997892  0.90303309  1.19070375  0.05489337
        [31]  0.03646646  0.04553108  0.02427045  0.35872374  0.37528677  0.11605970
        [37]  0.12034527 -0.28015423  3.32249290 -1.13529670  0.03315067  0.02970541
        [43] -0.31984221 -0.76117735  0.05094163  0.55098391  0.36347692 -0.49720367
        [49]  1.25203911 -0.71138871  0.43875324 -0.44653544  0.15015921 -0.08924866
        [55] -0.08205853 -0.08336948 -0.66487750 -1.48534156 -1.19469384 -0.33165737
        [61] -4.17835758  0.48521539  1.54523260  1.28097851  0.47447031  0.68879762
        [67]  0.72978029  0.07920992 -0.02991489 -0.02720370 -0.23827852  1.48272617
        [73]  0.60612812  0.61341050 -0.57651419  0.40119127  0.11384865  0.96428797
        [79]  1.03790954  0.85330306  0.58221097 -0.04007542
    
        attr(,"class")
        [1] "mGJR"
    

    我试图复制以下情况:

    enter image description here

    然后我试图获得如下输出:

    enter image description here

1 个答案:

答案 0 :(得分:4)

mGJR命令用于估计GARCH(广义自回归条件异方差)模型。 GARCH模型用于模拟时间序列的波动率(最常见的是资产收益率)。那个(以及许多参数)是您可以从拟合的GJR对象访问的。

如果您想了解更多关于GARCH模型与R中的示例配对的信息,我可以推荐R. Tsay的以下书籍:

  

我是否需要输入返回值而不是意外返回到模型中以自动导出意外返回值?

通常 GARCH模型的输入是过去观察到的回报。 (参见上述引用的书籍或最初提出ARCH模型的R. Engle的this article

有一些测试可以确定时间序列中是否存在任何线性依赖关系。如果有,则需要使用均值模型(例如VARIMA模型)将其删除。金融时间序列的Tsays分析也有例子和不同的案例。第133页很好地解释了波动率模型构建的完整过程。

简短:您的eps1eps2必须是这些(平均模型更正的)回归系列。

  

此外,如果我尝试,我的双变量GJR GARCH模型如何   使用从我的输出中导出的系数来描述它?如何从下面的长输出中获得我需要的模型系数?

需要进行一些挖掘,但在查看mgarchBEKK的{​​{3}}和publication from Schmidbauer & Roesch (2008)时,看起来mGJR规范就是作者Schmidbauer& Roesch称为双变量不对称二次GARCH(baqGARCH),链接出版物的第5页定义为:

the code

拟合GJR对象的参数按降序表示:C,A,B,Gamma,w。如同出版物的第7页(括号中较小字体的值是t值):

Schmidbauer&Roesch(2008),P.5

这是一个可重现的例子,用于拟合mGJR和访问参数:

# packages
library(mgarchBEKK)

# generate heteroscedastic data

dat <- simulateBEKK(series.count = 2, T = 200, c(1,1))

returns1 <- dat$eps[[1]]
returns2 <- dat$eps[[2]]

# fit GJR to data

my_mGJR <- mGJR(eps1 = returns1, eps2 = returns2, order = c(1, 1, 1))


# extract parameters from GJR object
my_param <- my_mGJR$est.params

# assign names
names(my_param) = c('C', 'A', 'B', 'Gamma', 'w')

# access parameters
my_param

拿走,例如系数矩阵B[1,][2,]会告诉您要查看矩阵的哪一行[,1][,2]。这里有一个过于简单的解释:由于你有一个双变量模型,对角元素[1,][,1][2,][,2]是系数,可以告诉你各个系列在它自己的方差上的一些信息。非对角线元素更多地是关于两个系列的条件协方差或波动溢出。

短:你有(2) - &gt;中的等式。您输入如上所示的系数 - &gt;您可以求解时间因变量的H_T(时间T的条件协方差矩阵)(returnseries_T-1,H_T-1)。

  

具体来说,我发现我总共有17个系数   他们是零。

如果系数固定为零,则不会将其计为参数。非对角线下系数C始终固定为零。因此,您总共有16个参数(如果您不限制模型,例如作者在他们的论文中所做的那样)。

  

然而,当我运行mGJR()时,它会输出输出结果&#34; $ resid1&#34;   和&#34; $ resid2&#34;看起来像残差

这是正确的,它们是系数没有解释的残差,但是对于条件波动率(不确定你在做什么&#34;意外回报&#34;)。它们可以说是模型无法解释的,随机白噪声(参见例如baqGARCH_parameter_matriceshere)。 GARCH模型中的残差主要用于执行一些模型充分性测试来回答这个问题:&#34;我的拟合模型是否足以解释条件方差方程?&#34;

这里是条件波动率,条件相关性和残差的图。在该系列的条件标准偏差中似乎存在一些波动性聚类(前两个图)。在残差序列中似乎没有那么多结构(最后两个图)。

wikipedia

情节的代码:

library(ggplot2)
library(reshape2)

my_results <- data.frame(index       = 1:200,
                         sd_returns1 = my_mGJR$sd1,
                         sd_returns2 = my_mGJR$sd2,
                         cor_returns = my_mGJR$cor,
                         res_returns1 = my_mGJR$resid1,
                         res_returns2 = my_mGJR$resid2)

# melt data to long format for plotting

p_results = melt(my_results, id = 'index')

# plot the results

my_p = ggplot(p_results, aes(x = index, y = value)) +
  geom_line() +
  facet_grid(variable ~ ., scales = "free_y") +
  theme_bw()


ggsave('example_cor_sd_res.png', plot = my_p, device = 'png', units = 'cm',
       width = 12, height = 15)
  

我试图复制以下情况:

基本上你拥有所需的一切。可以从参数的标准误差计算参数的重要性(p值或t值)。对于t值,例如您需要将参数除以标准误差。标准错误可以从GJR对象中获取,如:

my_param_se = my_mGJR$asy.se.coef

names(my_param_se) = paste0(rep("tvals_", 5), c('C', 'A', 'B', 'Gamma', 'w'))

my_param_se

由于mGJR命令模型(或baqGARCH)的构造类似于例如BEKK-GARCH你可能无法以与你的例子相同的方式解释它。正如我在上面详细阐述的那样,不同系数的对角线元素将告诉您系列1中创新的系列1的显着条件波动率 。非对角线元素将告诉您一些波动 - 从一个系列到另一个系列的溢出效应。如果您想要考虑到这一点,则需要在表格中包含这些结果。

  

然后我试图获得如下输出:

我在上面解释过的大部分内容,只是对残差的一个注释。看起来模型充分性是通过LjungBox-Test(= LB?)来衡量的。参见例如example_plot

我希望这能回答你的问题。

修改:更新回答以包含其他问题。