限制

时间:2017-09-12 10:46:06

标签: r time-series autoregressive-models

我在vars包中的加拿大数据上拟合了一个向量自回归模型,然后根据t值为1.64进行限制。

library(vars)
data("Canada")
var.can1 <- VAR(Canada, p = 2, type = "none")

summary(var.can1)

VAR Estimation Results:
========================= 
Endogenous variables: e, prod, rw, U 
Deterministic variables: none 
Sample size: 82 
Log Likelihood: -184.045 
Roots of the characteristic polynomial:
    1 0.9783 0.9113 0.9113 0.7474 0.1613 0.1613 0.1572
Call:
VAR(y = Canada, p = 2, type = "none")

# AIC BIC etc.
VARSelect(Canada, lag.max = 2, type = "none")$criteria

var.can2 <- restrict(var.can1, method = "ser", thresh = 1.64)

summary(var.can2)

VAR Estimation Results:
========================= 
Endogenous variables: e, prod, rw, U 
Deterministic variables: none 
Sample size: 82 
Log Likelihood: -191.376 
Roots of the characteristic polynomial:
    1 0.9742 0.9272 0.9272 0.7753 0.2105 0.2105 0.005071
Call:
VAR(y = Canada, p = 2, type = "none")

然后我想获得修订后的信息标准,但看不到这样做的方法。有谁知道怎么样?

编辑1

所以我尝试为无限制模型推导出AIC:

vars::VARselect(Canada, lag.max = 2, type = "none")$criteria
                  1            2
AIC(n) -5.600280680 -6.082112784
HQ(n)  -5.411741957 -5.705035337
SC(n)  -5.130676924 -5.142905272
FPE(n)  0.003697972  0.002289041

s <- summary(var.can1)
s$covres
                e          prod          rw             U
e     0.140560073  0.0056629572 -0.03893668 -0.0798565366
prod  0.005662957  0.4358209615  0.06689687 -0.0005118419
rw   -0.038936678  0.0668968657  0.60125872  0.0309232731
U    -0.079856537 -0.0005118419  0.03092327  0.0899478736

从新介绍到多时间序列分析Luetkepohl,Helmut 2007,第147页:

$$ AIC(m)= ln(det(covres))+ \ frac {2mk ^ 2} {T} $$

m是滞后顺序,k是系列数,T是样本大小

但我明白了:

-6.451984 + 2 * 2 * 4 ^ 2/84 = -5.69

不等于-5.600280680

1 个答案:

答案 0 :(得分:0)

在代码中挖掘我发现摘要中报告的残差协方差矩阵不是实际用于计算AIC的残差协方差矩阵。

非常令人沮丧,有些人会说一个错误。

beautifulsoup4==4.6.0
bleach==1.5.0
certifi==2017.7.27.1
chardet==3.0.4
Django==1.10.8
django-appconf==1.0.2
django-contrib-comments==1.8.0
django-meta==1.4
django-modeltranslation==0.12
filebrowser-safe==0.4.7
future==0.16.0
grappelli-safe==0.4.7
html5lib==0.9999999
idna==2.6
Mezzanine==4.2.2
oauthlib==2.0.3
olefile==0.44
Pillow==4.2.1
pinax-testimonials==1.0.5
psycopg2==2.7.3.1
pytz==2017.2
requests==2.18.4
requests-oauthlib==0.8.0
six==1.10.0
tzlocal==1.4
urllib3==1.22
webencodings==0.5.1