我试图使用Arduino Uno和连接到电机的编码器来控制两台直流电机的速度。
我已经编写了一个代码,用于检查编码器位置是否发生变化,并根据计算出电机的速度。
我已使用this website代码:
我在计算编码器的新位置和编码器的旧位置之间的差异时遇到了问题。出于某种原因,即使速度保持不变,差异也会持续上升。
到目前为止,这是我的代码:
#define pwmLeft 10
#define pwmRight 5
#define in1 9
#define in2 8
#define in3 7
#define in4 6
//MOTOR A
int motorSpeedA = 100;
static int pinA = 2; // Our first hardware interrupt pin is digital pin 2
static int pinB = 3; // Our second hardware interrupt pin is digital pin 3
volatile byte aFlag = 0; // let's us know when we're expecting a rising edge on pinA to signal that the encoder has arrived at a detent
volatile byte bFlag = 0; // let's us know when we're expecting a rising edge on pinB to signal that the encoder has arrived at a detent (opposite direction to when aFlag is set)
volatile long encoderPos = 0; //this variable stores our current value of encoder position. Change to int or uin16_t instead of byte if you want to record a larger range than 0-255
volatile long oldEncPos = 0; //stores the last encoder position value so we can compare to the current reading and see if it has changed (so we know when to print to the serial monitor)
volatile long reading = 0; //somewhere to store the direct values we read from our interrupt pins before checking to see if we have moved a whole detent
//MOTOR B
static int pinC = 12; // Our first hardware interrupt pin is digital pin 2
static int pinD = 33; // Our second hardware interrupt pin is digital pin 3
volatile byte cFlag = 0; // let's us know when we're expecting a rising edge on pinA to signal that the encoder has arrived at a detent
volatile byte dFlag = 0; // let's us know when we're expecting a rising edge on pinB to signal that the encoder has arrived at a detent (opposite direction to when aFlag is set)
volatile long encoderPosB = 0; //this variable stores our current value of encoder position. Change to int or uin16_t instead of byte if you want to record a larger range than 0-255
volatile long oldEncPosB = 0; //stores the last encoder position value so we can compare to the current reading and see if it has changed (so we know when to print to the serial monitor)
volatile long readingB = 0;
int tempPos;
long vel;
unsigned long newtime;
unsigned long oldtime = 0;
void setup() {
//MOTOR A
pinMode(pinA, INPUT_PULLUP); // set pinA as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
pinMode(pinB, INPUT_PULLUP); // set pinB as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
attachInterrupt(0, PinA, RISING); // set an interrupt on PinA, looking for a rising edge signal and executing the "PinA" Interrupt Service Routine (below)
attachInterrupt(1, PinB, RISING); // set an interrupt on PinB, looking for a rising edge signal and executing the "PinB" Interrupt Service Routine (below)
//MOTOR B
pinMode(pinC, INPUT_PULLUP); // set pinA as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
pinMode(pinD, INPUT_PULLUP); // set pinB as an input, pulled HIGH to the logic voltage (5V or 3.3V for most cases)
attachInterrupt(0, PinC, RISING); // set an interrupt on PinA, looking for a rising edge signal and executing the "PinA" Interrupt Service Routine (below)
attachInterrupt(1, PinD, RISING);
Serial.begin(9600); // start the serial monitor link
pinMode (in1, OUTPUT);
pinMode (in2, OUTPUT);
pinMode (in3, OUTPUT);
pinMode (in4, OUTPUT);
digitalWrite (8, HIGH);
digitalWrite (9, LOW); //LOW
digitalWrite (7, LOW); //LOW
digitalWrite (6, HIGH);
pinMode (pwmLeft, OUTPUT);
pinMode (pwmRight, OUTPUT);
}
void PinA(){
cli(); //stop interrupts happening before we read pin values
reading = PIND & 0xC; // read all eight pin values then strip away all but pinA and pinB's values
if(reading == B00001100 && aFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
encoderPos --; //decrement the encoder's position count
bFlag = 0; //reset flags for the next turn
aFlag = 0; //reset flags for the next turn
} else if (reading == B00000100) bFlag = 1; //signal that we're expecting pinB to signal the transition to detent from free rotation
sei(); //restart interrupts
}
void PinB(){
cli(); //stop interrupts happening before we read pin values
reading = PIND & 0xC; //read all eight pin values then strip away all but pinA and pinB's values
if (reading == B00001100 && bFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
encoderPos ++; //increment the encoder's position count
bFlag = 0; //reset flags for the next turn
aFlag = 0; //reset flags for the next turn
} else if (reading == B00001000) aFlag = 1; //signal that we're expecting pinA to signal the transition to detent from free rotation
sei(); //restart interrupts
}
void PinC(){
cli(); //stop interrupts happening before we read pin values
readingB = PIND & 0xC; // read all eight pin values then strip away all but pinA and pinB's values
if(readingB == B00001100 && cFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
encoderPosB --; //decrement the encoder's position count
dFlag = 0; //reset flags for the next turn
cFlag = 0; //reset flags for the next turn
} else if (readingB == B00000100) dFlag = 1; //signal that we're expecting pinB to signal the transition to detent from free rotation
sei(); //restart interrupts
}
void PinD(){
cli(); //stop interrupts happening before we read pin values
readingB = PIND & 0xC; //read all eight pin values then strip away all but pinA and pinB's values
if (readingB == B00001100 && dFlag) { //check that we have both pins at detent (HIGH) and that we are expecting detent on this pin's rising edge
encoderPosB ++; //increment the encoder's position count
dFlag = 0; //reset flags for the next turn
cFlag = 0; //reset flags for the next turn
} else if (readingB == B00001000) cFlag = 1; //signal that we're expecting pinA to signal the transition to detent from free rotation
sei(); //restart interrupts
}
void loop(){
analogWrite(pwmLeft, motorSpeedA);
analogWrite(pwmRight, motorSpeedA);
if(oldEncPos != encoderPos) {
newtime = millis();
tempPos = encoderPos - oldEncPos;
vel = tempPos / (newtime - oldtime);
Serial.println(tempPos);
oldEncPos = encoderPos;
oldtime = newtime;
delay(250);
}
if(oldEncPosB != encoderPosB) {
Serial.println(encoderPosB);
oldEncPosB = encoderPosB;
}
}
两个if语句用于检查编码器是否正常工作。在第一个if语句中,我试图计算速度。
我将不胜感激。
谢谢。
编辑:
我发现了一个编码器库,它使一切变得更加容易。
所以现在我的代码看起来像这样:
#include <Encoder.h>
#define pwmLeft 10
#define pwmRight 5
Encoder myEncA(3, 2);
Encoder myEncB(13, 12);
unsigned long oldtimeA = 0;
unsigned long oldtimeB = 0;
int speedA = 100;
int speedB = 130;
void setup() {
Serial.begin(9600);
digitalWrite (8, HIGH);
digitalWrite (9, LOW); //LOW
digitalWrite (7, LOW); //LOW
digitalWrite (6, HIGH);
pinMode (pwmLeft, OUTPUT);
pinMode (pwmRight, OUTPUT);
}
long oldPositionA = -999;
long oldPositionB = -999;
void loop() {
analogWrite(pwmLeft, speedA);
analogWrite(pwmRight, speedB);
long newPositionA = myEncA.read();
long newPositionB = myEncB.read();
if ((newPositionA != oldPositionA) || (newPositionB != oldPositionB)) {
unsigned long newtimeA = millis ();
long positionA = newPositionA - oldPositionA;
long positionB = newPositionB - oldPositionB;
long velB = (positionB) / (newtimeA - oldtimeA);
long velA = (positionA) / (newtimeA - oldtimeA);
oldtimeA = newtimeA;
oldPositionA = newPositionA;
oldPositionB = newPositionB;
Serial.println(velB);
}
}
我仍然遇到我的问题&#34; B&#34;电机,由于某种原因,计算仍然是关闭的。
Motor&#34; A&#34;工作正常
答案 0 :(得分:1)
一些问题,包括循环中的除零错误()。此扫描会导致控制器重置。在进行除法时,请务必检查除数的值!
仅使用正转换会不必要地将读数的分辨率降低2。
Arduino是一个8位控制器...读int
需要多条指令,这意味着你应该在读取被中断例程修改的int
之前禁用中断。如果不这样做,将导致vakue读取奇怪的跳转。这通常是这样做的:
//...
NoInterrupts();
int copyOfValue = value; // use the copy to work with.
interrupts();
//...
在您的情况下,单个字节值可能足以存储运动,每30 ms复位一次,这应该会给您最高速度255脉冲/ 30ms = 8500脉冲/秒或1275000 rpm,24个刻度/转编码器。 :)在这种情况下,无需禁用读取中断。
每30ms读取一次,1滴/ 30ms = 33滴/秒,或85转。动作有点高。您可能需要平均读数,具体取决于您的应用。
此外,您使用的算法肯定不会起作用。主要原因是读取和调整之间的延迟太小。大多数读数都是零。删除println()调用时会遇到问题。我建议读数之间至少有30 ms的起搏时间。 100 ms可能会更好一些,具体取决于您的应用程序。使用float
变量进行速度平均肯定有帮助。
void loop()
{
//...
if(oldEncPos != encoderPos) {
newtime = millis();
tempPos = encoderPos - oldEncPos;
vel = tempPos / (newtime - oldtime); // <-- if newtime == oltime => divide by zero.
//...
}
//...
}
编码器读码似乎非常复杂......
#define PIN_A 2 // encoder bit 0
#define PIN_B 3 // encoder bit 1
volatile char encVal1;
volatile unsigned char encPos1; // using char
void OnEncoder1Change()
{
char c = (digitalRead(pinA) ? 0b01 : 0)
+ (digitalRead(pinB) ? 0b10 : 0); // read
char delta = (c - encVal1) & 0b11; // get difference, mask
if (delta == 1) // delta is either 1 or 3
++encPos1;
else
--encPos1;
encVal1 = c; // keep reading for next time.
encPos1 += delta; // get position.
// no need to call sei()
}
setup()
{
pinMode(pinA, INPUT_PULLUP);
pinMode(pinB, INPUT_PULLUP);
// get an initial value
encValA = digitalRead(pinA) ? 0b01 : 0;
encValA += digitalRead(pinB) ? 0b10 : 0;
// use digitalPinToInterrupt() to map interrupts to a pin #
// ask for interrupt on change, this doubles .
attachInterrupt(digitalPinToInterrupt(PIN_A), OnEncoder1Change, CHANGE);
attachInterrupt(digitalPinToInterrupt(PIN_B), OnEncoder1Change, CHANGE);
//...
}
unsigned char oldTime;
unsigned char oldPos;
int speed;
void loop()
{
unsigned char time = millis();
if (time - oldTime > 30) // pace readings so you have a reasonable value.
{
unsigned char pos = encPos1;
signed char delta = pos - oldPos;
speed = 1000 * delta) / (time - oldTime); // signed ticks/s
encPos1 -= pos; // reset using subtraction, do you don't miss out
// on any encoder pulses.
oldTime = time;
}
}