我正在编写一个程序,给出输入k =某个数字,DNA = dna的片段列表,输出应该给出一个大小为k的k-mer,它在字符串数组中具有最小的汉明距离。我有三个函数,1。计算k-mer和片段dna的不同窗口之间的汉明距离,并返回具有最低分数的窗口的汉明距离,2。生成所有可能的k-mers大小的汉明距离k,和3.遍历所有大小为k的窗口和每个可能的k-mer的窗口。不幸的是,我的程序给了我输出AAA,这是不正确的。我知道我的逻辑错误不在组合(k)和hammingDistance中,因为我之前使用它们来获得正确的结果。
import itertools
def combination(k):
bases=['A','T','G','C']
combo=[''.join(p) for p in itertools.product(bases, repeat=k)]
return combo
def hammingDistance(pattern, seq):
if pattern == seq:
return 0
else:
dist=0
for i in range(len(seq)):
if pattern[i] != seq[i]:
dist += 1
return dist
def median_string(k, DNA):
k_mers = combination(k)
distance = 0
temp = 1000000000000000000
for string in DNA:
hamming = 1000000000000000000
c = 0
for k_mer in k_mers:
for subset in string[c: len(string) - k]:
if hamming > hammingDistance(k_mer, string[c : c+k]):
hamming = hammingDistance(k_mer, string[c : c+k])
c += 1
distance += hamming
if distance < temp:
temp = distance
best_pattern = k_mer
distance = 0
return best_pattern
答案 0 :(得分:0)
事实证明,在最后一个条件中只是一个缩进错误。
def median_string(k, DNA):
k_mers = combination(k)
distance = 0
temp = 1000000000000000000
for k_mer in k_mers:
for string in DNA:
hamming = 1000000000000000000
c = 0
for subset in string[c: len(string) - k]:
if hamming > hammingDistance(k_mer, string[c : c+k]):
hamming = hammingDistance(k_mer, string[c : c+k])
c += 1
distance += hamming
if distance < temp:
temp = distance
best_pattern=k_mer
distance=0
return best_pattern