枚举具有N个元素的1d数组的所有k分区?

时间:2010-12-30 14:48:13

标签: java c arrays algorithm data-partitioning

这似乎是一个简单的请求,但谷歌不是我的朋友,因为“分区”在数据库和文件系统空间中得分很多。

我需要将N个值(N是常数)的数组的所有分区枚举成k个子数组。子数组就是 - 起始索引和结束索引。将保留原始数组的整体顺序。

例如,N = 4且k = 2:

[ | a b c d ] (0, 4)
[ a | b c d ] (1, 3)
[ a b | c d ] (2, 2)
[ a b c | d ] (3, 1)
[ a b c d | ] (4, 0)

并且k = 3:

[ | | a b c d ] (0, 0, 4)
[ | a | b c d ] (0, 1, 3)
  :
[ a | b | c d ] (1, 1, 2)
[ a | b c | d ] (1, 2, 1)
  :
[ a b c d | | ] (4, 0, 0)

我很确定这不是一个原始问题(不,它不是作业),但我想为每个k <= N做这个,如果后来通过它会很棒(随着k的增长)利用了早期的结果。

如果您有链接,请分享。

2 个答案:

答案 0 :(得分:7)

为了重复使用先前的结果(对于较小的k值),您可以进行递归。

将此类分区视为结束索引列表(任何分区的起始索引只是最后一个分区的结束索引,或者是第一个分区的结束索引)。

因此,您的分区集只是0到N之间的所有k非递减整数数组的集合。

如果k有界限,您可以通过k嵌套循环执行此操作

for (i[0]=0; i[0] < N; i[0]++) {
    for (i[1]=i[0]; i[1] < N; i[1]++) {
    ...
            for (i[10]=i[9]; i[10] < N; i[10]++) {
                push i[0]==>i[10] onto the list of partitionings.
            }
    ...
    }
}

如果k无限制,您可以递归地执行此操作。

索引S和E之间的一组k分区通过以下方式获得:

  • 在S和E之间循环“第一个分区的结尾”EFP。对于每个值:

    • 以递归方式查找EFP与S之间的k-1分区列表

    • 对于该列表中的每个向量,将“EFP”预先挂起到该向量。

    • 将结果长度为k的矢量添加到结果列表中。

请注意,我的答案会生成每个切片的终点列表。如果您(如您的示例所示)想要每个切片的LENGTHS列表,则需要通过从当前切片结尾减去最后一个切片结束来获取长度。

答案 1 :(得分:0)

每个分区可以通过分隔各部分的k-1索引来描述。由于保留了订单,因此这些指数必须不减少。也就是说,大小为k-1的子集与您寻找的分区之间存在直接对应关系。

对于遍历大小为k-1的所有子集,您可以查看问题:

How to iteratively generate k elements subsets from a set of size n in java?

唯一的缺点是,如果允许空白部分,几个切割点可以重合,但是一个子集最多可以包含每个索引一次。您必须通过替换:

来稍微调整算法
        processLargerSubsets(set, subset, subsetSize + 1, j + 1);

通过

        processLargerSubsets(set, subset, subsetSize + 1, j);