有人可以为我提供一个函数的链接或伪代码,用于查找n中k个元素的所有组合吗?可能在STL。我不需要计算n选择k,我需要列出所有大小为k的数字向量。
由于
答案 0 :(得分:25)
在C ++中给出以下例程:
template <typename Iterator>
inline bool next_combination(const Iterator first, Iterator k, const Iterator last)
{
/* Credits: Thomas Draper */
if ((first == last) || (first == k) || (last == k))
return false;
Iterator itr1 = first;
Iterator itr2 = last;
++itr1;
if (last == itr1)
return false;
itr1 = last;
--itr1;
itr1 = k;
--itr2;
while (first != itr1)
{
if (*--itr1 < *itr2)
{
Iterator j = k;
while (!(*itr1 < *j)) ++j;
std::iter_swap(itr1,j);
++itr1;
++j;
itr2 = k;
std::rotate(itr1,j,last);
while (last != j)
{
++j;
++itr2;
}
std::rotate(k,itr2,last);
return true;
}
}
std::rotate(first,k,last);
return false;
}
然后您可以继续执行以下操作:
// 9-choose-3
std::string s = "123456789";
std::size_t k = 3;
do
{
std::cout << std::string(s.begin(),s.begin() + k) << std::endl;
}
while(next_combination(s.begin(),s.begin() + k,s.end()));
或者对于int的std :: vector:
// 5-choose-3
std::size_t n = 5;
std::size_t k = 3;
std::vector<int> ints;
for (int i = 0; i < n; ints.push_back(i++));
do
{
for (int i = 0; i < k; ++i)
{
std::cout << ints[i];
}
std::cout << "\n";
}
while(next_combination(ints.begin(),ints.begin() + k,ints.end()));
答案 1 :(得分:10)
http://howardhinnant.github.io/combinations.html
搜索“for_each_combination”。如果你发现更快的东西,请告诉我。与我经常看到的其他算法不同,这个算法不要求元素类型为LessThanComparable。
答案 2 :(得分:3)
创建一个辅助向量,其中n - k为零,后跟k个。零表示不包含原始容器中的元素,而一个表示包含该元素。
现在在辅助向量上使用std :: next_permutation来获得下一个组合。
答案 3 :(得分:1)
这是一个可以完成工作的伪代码的懒惰示例......
void nChooseK(array[n],k){
recurse("",array[n],k);
}
void recurse(initialString,array[n],k){
if(k == 0){
print initialString;
return;
}
for(i=0;i<n;i++){
tmpArray = array[0...i-1]+array[i+1...];//the array without the object to remove
recurse(initialString + array[i], tmpArray,k-1)
}
}
答案 4 :(得分:0)
您可以使用std::next_permutation,但它是n!而不是选择k。您可以在创建它们后对其进行过滤。但这个解决方案是O(n!),并不是非常完美。以下是试错法解决方案:
int factorial(int value)
{
int result = 1;
for(int i = 1; i <= value; i++)
{
result *= i;
}
return result;
}
std::set<std::set<int>> binomial_coefficient(std::vector<int> input, int k)
{
std::set<std::set<int>> solutions;
for(unsigned int i = 0; i < factorial(input.size()); i++)
{
std::next_permutation(input.begin(), input.end());
solutions.insert(std::set<int>(input.begin(), input.begin() + k));
}
return solutions;
}