在opencv中使用Hough变换检测垂直线

时间:2017-07-25 17:46:19

标签: python opencv

我试图在opencv(Python)中使用Hough变换删除方框(垂直和水平线)。问题是没有检测到垂直线。我已经尝试了查看轮廓和层次结构,但此图像中的轮廓太多,我对如何使用它们感到困惑。

在查看相关帖子后,我已经使用了阈值和rho参数,但这并没有帮助。 我已附上代码以获取更多详细信息。为什么Hough变换找不到图像中的垂直线?欢迎任何解决此任务的建议。感谢。

输入图片: enter image description here

Hough转换了Image:enter image description here

绘制轮廓: enter image description here

import cv2
import numpy as np
import pdb


img = cv2.imread('/home/user/Downloads/cropped/robust_blaze_cpp-300-0000046A-02-HW.jpg')

gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
ret, thresh = cv2.threshold(gray, 140, 255, 0)
im2, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_SIMPLE)
cv2.drawContours(img, contours, -1, (0,0,255), 2)

edges = cv2.Canny(gray,50,150,apertureSize = 3)
minLineLength = 5
maxLineGap = 100
lines = cv2.HoughLinesP(edges,rho=1,theta=np.pi/180,threshold=100,minLineLength=minLineLength,maxLineGap=maxLineGap)
for x1,y1,x2,y2 in lines[0]:
    cv2.line(img,(x1,y1),(x2,y2),(0,255,0),2)

cv2.imwrite('probHough.jpg',img)

1 个答案:

答案 0 :(得分:12)

老实说,我不是寻找线条,而是寻找白盒子。

  1. 制备

    [('head3', 'head7'), ('head4', 'head9')]
    
  2. 加载图片

    import cv2
    import numpy as np
    
  3. 将其二值化,以便框和数字都是黑色,其余为白色

    img = cv2.imread("digitbox.jpg", 0)
    

    Step 1 -- thresholded input

  4. 查找轮廓。在此示例图像中,只需查找外部轮廓即可。

    _, thresh = cv2.threshold(img, 200, 255, cv2.THRESH_BINARY)
    cv2.imwrite('digitbox_step1.png', thresh)
    
  5. 处理轮廓,过滤掉任何面积太小的轮廓。找到每个轮廓的凸包,创建轮廓外的所有区域的蒙版。存储每个找到的轮廓的边界框,按x坐标排序。

    _, contours, hierarchy = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
    

    Step 2 -- the mask

  6. 扩大面具(收缩黑色部分),剪掉任何残留的灰色框架。

    mask = np.ones_like(img) * 255
    
    boxes = []
    
    for contour in contours:
        if cv2.contourArea(contour) > 100:
            hull = cv2.convexHull(contour)
            cv2.drawContours(mask, [hull], -1, 0, -1)
            x,y,w,h = cv2.boundingRect(contour)
            boxes.append((x,y,w,h))
    
    boxes = sorted(boxes, key=lambda box: box[0])
    
    cv2.imwrite('digitbox_step2.png', mask)
    

    Step 3 -- dilated mask

  7. 用白色填充所有蒙版像素,以擦除帧。

    mask = cv2.dilate(mask, np.ones((5,5),np.uint8))
    
    cv2.imwrite('digitbox_step3.png', mask)
    

    Step 4 - cleaned up input

  8. 根据需要处理数字 - 我只需绘制边界框。

    img[mask != 0] = 255
    
    cv2.imwrite('digitbox_step4.png', img)
    

    Enumerated bounding boxes

  9. 整个剧本为一体:

    result = cv2.cvtColor(img, cv2.COLOR_GRAY2BGR)
    
    for n,box in enumerate(boxes):
        x,y,w,h = box
        cv2.rectangle(result,(x,y),(x+w,y+h),(255,0,0),2)
        cv2.putText(result, str(n),(x+5,y+17), cv2.FONT_HERSHEY_SIMPLEX, 0.6,(255,0,0),2,cv2.LINE_AA)
    
    cv2.imwrite('digitbox_step5.png', result)