我必须在给定的图表中找到长度为3的所有周期。我已经使用BFS实现了它,但到目前为止它仅适用于相对较小的输入。它仍适用于较大的并给出正确答案,但找到答案所需的时间非常长。有没有办法改进以下代码,使其更有效?
num_res = 0
adj_list = []
cycles_list = []
def bfs_cycles(start):
queue = [(start, [start])]
depth = 0
while queue and depth <= 3:
(vertex, path) = queue.pop(0)
current_set = set(adj_list[vertex]) - set(path)
if start in set(adj_list[vertex]):
current_set = current_set.union([start])
depth = len(path)
for node in current_set:
if node == start:
if depth == 3 and sorted(path) not in cycles_list:
cycles_list.append(sorted(path))
yield path + [node]
else:
queue.append((node, path + [node]))
if __name__ == "__main__":
num_towns, num_pairs = [int(x) for x in input().split()]
adj_list = [[] for x in range(num_towns)]
adj_matrix = [[0 for x in range(num_towns)] for x in range(num_towns)]
# EDGE LIST TO ADJACENCY LIST
for i in range(num_pairs):
cur_start, cur_end = [int(x) for x in input().split()]
adj_list[cur_start].append(cur_end)
adj_list[cur_end].append(cur_start)
num_cycles = 0
for i in range(num_towns):
my_list = list(bfs_cycles(i))
num_cycles += len(my_list)
print(num_cycles)
输入示例:
6 15
5 4
2 0
3 1
5 1
4 1
5 3
1 0
4 0
4 3
5 2
2 1
3 0
3 2
5 0
4 2
(输出:20;工作正常)
52 1051
48 5
41 28
12 4
33 27
12 5
1 0
15 12
50 8
33 8
38 28
26 10
13 7
39 18
31 11
48 19
41 19
40 25
47 45
27 16
46 25
42 6
5 4
51 2
30 21
41 27
26 25
33 11
45 26
16 7
23 15
17 6
45 22
32 6
29 8
36 20
30 1
36 25
41 6
46 4
46 40
18 8
38 1
28 5
43 22
21 11
39 14
31 29
18 9
50 35
32 17
48 27
49 40
16 1
49 47
41 12
30 28
33 14
48 12
37 20
49 20
48 8
48 6
27 17
46 44
31 12
17 9
32 27
14 11
40 23
36 19
38 10
42 2
35 22
26 23
29 23
30 11
11 7
47 12
30 13
38 34
48 11
46 8
42 31
30 4
35 17
50 2
51 1
12 10
44 25
47 17
45 24
25 2
45 11
39 21
39 31
9 6
16 3
10 6
15 11
37 2
23 6
41 40
34 26
45 33
35 23
45 36
11 4
38 7
36 6
10 3
33 12
39 12
41 24
47 8
33 5
44 18
45 8
48 41
44 37
11 3
16 6
21 10
20 0
44 36
29 4
43 33
48 4
46 35
33 6
42 12
45 19
12 8
37 15
43 41
36 11
12 11
50 37
9 7
51 30
36 0
33 17
36 35
50 36
49 37
50 16
46 21
36 22
49 15
46 28
50 27
20 10
23 0
36 29
35 33
42 17
31 16
48 47
48 23
17 2
40 14
10 5
45 7
48 42
39 32
51 4
42 8
38 19
34 10
50 5
51 36
46 26
42 38
20 12
44 32
34 4
49 6
50 45
37 10
45 41
38 11
42 30
21 20
43 23
42 26
33 1
17 7
26 6
16 12
44 16
21 9
36 30
39 24
26 4
47 10
18 7
36 12
26 17
28 13
18 11
23 7
44 4
43 26
26 16
22 21
37 0
36 28
34 5
22 17
41 20
31 8
27 25
12 2
42 11
29 28
39 33
34 12
30 2
22 8
40 15
42 9
28 7
44 41
41 35
44 17
12 7
13 10
23 20
48 38
43 12
32 19
43 30
50 1
10 1
17 12
32 2
26 14
29 12
32 5
7 6
36 16
49 7
31 1
45 17
33 29
28 11
32 0
49 32
42 36
16 4
45 20
21 14
39 15
34 18
13 8
27 15
19 11
37 36
36 14
28 4
36 13
17 11
38 13
35 28
50 10
39 28
40 2
35 8
32 24
47 34
45 27
41 21
21 4
47 27
48 1
35 30
21 5
20 14
27 26
17 1
28 17
43 7
31 6
20 3
34 21
8 2
21 1
32 9
29 1
45 43
50 39
19 15
22 12
48 7
46 18
45 35
50 42
51 17
37 6
24 23
29 3
39 20
51 50
38 6
50 11
38 14
25 24
14 7
45 44
28 14
50 49
42 28
36 7
35 25
13 4
46 1
48 21
51 11
39 11
17 5
31 0
49 36
40 4
37 21
35 1
23 4
43 4
46 36
38 20
37 27
30 0
44 34
49 10
48 14
48 45
38 31
47 29
40 16
51 20
34 17
51 19
24 9
24 5
5 1
15 13
26 2
19 12
50 14
42 7
35 14
46 20
43 28
8 3
38 37
28 1
21 0
51 5
17 16
38 17
34 30
46 12
17 14
50 9
16 13
30 27
45 0
41 16
41 32
48 18
30 8
51 47
11 8
40 13
34 32
23 11
51 28
42 35
36 2
13 11
28 8
15 10
39 35
27 1
50 7
41 23
46 39
38 9
44 10
46 38
6 4
44 27
36 21
35 9
45 30
44 7
37 1
44 28
9 1
32 31
39 16
4 0
44 13
24 0
17 15
15 1
32 8
39 22
42 34
24 6
49 18
36 1
51 42
38 5
14 12
33 3
51 45
24 18
37 32
46 6
44 12
23 10
32 12
50 26
29 20
41 30
6 0
48 31
39 8
21 19
47 6
47 16
18 3
46 27
11 10
36 3
47 2
17 10
43 6
36 8
4 1
14 9
42 1
44 1
46 22
44 23
40 26
30 17
21 17
42 29
45 16
49 45
11 6
35 7
46 42
14 10
26 13
49 44
19 18
26 12
46 2
50 41
43 20
38 24
48 30
34 29
25 19
32 11
46 16
30 25
38 15
50 38
51 23
47 28
14 5
40 12
21 8
47 36
38 32
32 15
28 21
45 10
44 8
34 0
32 14
43 25
32 21
38 2
27 2
24 17
33 31
49 26
22 13
13 1
32 20
43 0
46 0
45 29
40 32
48 44
45 34
29 2
39 27
14 8
26 3
40 19
45 38
40 11
34 6
43 39
40 8
35 0
18 0
47 25
21 18
24 8
18 4
25 14
20 11
18 17
24 14
27 23
47 15
38 21
19 2
6 1
46 11
51 38
6 3
31 17
3 0
13 2
41 1
51 14
19 5
39 2
41 22
16 9
22 3
13 0
42 21
24 16
44 31
51 25
40 33
46 29
47 31
51 35
35 18
43 1
47 22
20 18
48 29
39 23
31 25
32 25
22 10
46 24
32 3
46 13
24 15
34 13
50 18
41 4
41 2
43 27
29 10
30 20
32 7
50 20
42 10
42 24
15 7
48 25
41 39
32 1
40 36
20 7
32 13
27 3
34 7
48 34
47 39
39 36
40 5
19 0
25 20
38 12
27 14
44 3
36 4
37 4
33 28
37 23
34 9
46 45
25 9
30 16
34 14
46 37
28 26
26 22
18 5
16 0
36 27
45 42
38 33
37 22
27 0
44 15
49 42
34 23
29 11
30 12
17 8
48 28
10 4
36 15
44 14
23 19
43 18
27 5
40 1
18 12
34 20
50 23
9 3
35 4
46 15
37 11
27 4
19 3
45 1
47 1
48 17
9 2
39 26
33 10
38 30
45 25
48 24
29 17
37 28
34 31
51 21
43 8
31 4
20 16
39 25
31 13
24 3
50 43
13 9
32 23
40 18
45 40
37 35
47 38
42 13
51 26
43 31
49 23
18 15
15 0
43 9
7 2
48 46
35 11
42 23
47 40
3 1
25 6
46 3
42 19
28 9
15 3
43 3
35 10
42 41
51 46
9 4
46 34
28 0
6 5
45 14
26 11
48 13
33 23
40 9
23 21
18 16
28 12
43 29
35 31
30 14
36 34
49 38
49 22
24 11
23 14
45 13
49 21
48 16
51 10
39 4
50 46
50 48
43 17
31 18
38 23
2 0
41 0
30 19
20 1
29 19
48 32
30 15
40 22
51 12
50 40
24 4
39 10
31 20
7 0
40 17
41 31
37 29
33 32
30 3
40 6
51 15
46 19
31 28
34 22
31 5
33 7
29 14
34 24
44 6
24 2
44 40
35 6
37 18
47 0
43 42
49 30
49 25
19 1
25 3
49 5
40 10
25 21
48 15
35 19
50 6
36 17
44 33
21 13
15 4
36 32
28 6
49 35
47 9
49 46
47 14
25 4
44 29
38 25
23 12
51 41
20 5
39 34
15 6
47 23
21 6
47 11
22 7
41 29
34 2
43 38
6 2
3 2
40 20
40 24
37 16
32 26
49 31
49 16
50 13
31 2
26 1
5 0
19 16
45 32
42 40
16 5
15 8
38 27
12 6
47 4
39 6
31 19
26 9
47 18
42 32
4 2
42 20
46 10
27 6
41 7
49 2
49 28
20 9
46 33
16 11
14 4
34 1
33 2
30 6
47 44
41 8
23 17
33 25
23 5
24 13
33 20
44 35
47 46
47 7
41 25
45 5
28 23
31 15
31 10
39 9
40 7
45 6
43 11
35 26
51 34
44 38
45 3
24 19
51 22
47 42
34 15
37 33
29 9
49 3
14 3
23 2
39 7
46 23
40 31
33 16
44 43
41 36
37 17
43 40
32 18
46 32
26 18
4 3
39 5
44 11
28 20
44 21
41 26
39 38
36 5
7 3
39 0
27 18
26 20
18 2
50 28
37 26
40 27
17 4
50 3
39 30
32 29
50 34
18 1
20 4
36 23
25 15
49 0
45 39
39 1
37 5
23 16
47 20
27 20
38 4
46 43
34 27
15 5
31 23
39 29
46 7
38 35
41 14
45 9
25 22
10 9
35 21
19 14
37 8
47 35
9 0
35 13
21 16
50 32
37 7
19 8
22 5
51 24
51 9
29 0
51 39
44 19
42 5
31 9
40 30
51 37
25 12
26 0
32 16
25 1
41 13
47 43
25 18
35 29
50 44
45 23
44 20
50 47
22 2
45 4
34 19
48 33
34 16
18 10
29 18
37 13
45 2
43 14
48 10
15 2
28 22
29 16
45 15
19 17
35 16
46 9
9 5
35 27
30 5
49 39
32 28
42 3
48 37
43 32
44 30
37 30
14 2
47 32
20 8
18 13
25 5
44 5
29 15
49 11
42 14
30 29
42 27
19 6
51 49
51 13
12 1
40 34
23 13
27 11
51 43
27 24
19 13
26 19
16 10
23 1
46 5
35 15
30 10
48 3
19 9
25 23
16 14
23 3
34 11
27 9
32 30
39 19
50 33
45 21
50 12
13 3
50 15
25 16
49 14
41 17
47 19
43 36
13 12
30 7
49 48
14 0
24 7
49 27
30 26
47 21
14 6
30 22
22 9
29 5
23 22
51 40
42 37
29 6
8 5
51 29
22 4
28 19
21 3
45 12
47 26
43 35
48 43
20 2
24 21
33 22
24 20
41 5
35 3
43 15
43 34
19 10
47 41
49 8
29 21
51 31
43 19
50 17
47 24
(输出:11061;大约需要10秒)
答案 0 :(得分:0)
代码中的一些问题:
sorted(path) not in cycles_list
具有O(n)
复杂度,其中n
的大小为cycles_list
queue.pop(0)
具有O(n)
复杂度,其中n
是queue
的大小。您应该使用collections.deque
structure,而不是此处的列表。作为一般说明,除非你真的需要使用专门的BFS解决问题(例如因为有些人要求你使用这种方法),所以循环的简单组合可以更好地完成工作。伪代码:
num_loops = 0
for a in nodes:
for b in neighbors(a)
if b > a:
for c in neighbors(b):
if c > b and a in neighbors(c):
num_loops += 1
添加b > a
和c > b
检查只计算每个循环一次。
答案 1 :(得分:0)
对于像3这样的少数步骤,如果您可以在3个步骤内离开并返回节点,则可以检查每个节点。
这种方法运行得相当快:
import fileinput
graph = {}
# Recursive function to find a goal in a number of steps
def count_unique_walks(start, goal, length, visited=[]):
if length == 0:
# Out of steps
return 1 if start == goal else 0
if start in visited:
# Already been here
return 0
result = 0
for neighbor in graph[start]:
if neighbor < start and neighbor != goal:
# Count only unique cycles
continue
result += count_unique_walks(neighbor, goal, length-1, visited+[start])
return result
# Read input
for line in fileinput.input():
a, b = map(int, line.split())
if a not in graph:
graph[a] = set()
graph[a].add(b)
if b not in graph:
graph[b] = set()
graph[b].add(a)
# Sum up the cycles of each node
result = 0
for node in graph:
result += count_unique_walks(node, node, 3)
print result