我正在尝试计算我的占用数据集的可预测性的上限,如宋的“人类流动可预测性的限制”一文中所述。基本上,家(= 1)而不是在家(= 0)则表示宋的论文中的访问地点(塔)。
我在一个随机二进制序列上测试了我的代码(我从https://github.com/gavin-s-smith/MobilityPredictabilityUpperBounds和https://github.com/gavin-s-smith/EntropyRateEst派生),该二进制序列的熵应为1,可预测性为0.5。相反,返回的熵为0.87,可预测性为0.71。
这是我的代码:
import numpy as np
from scipy.optimize import fsolve
from cmath import log
import math
def matchfinder(data):
data_len = len(data)
output = np.zeros(len(data))
output[0] = 1
# Using L_{n} definition from
#"Nonparametric Entropy Estimation for Stationary Process and Random Fields, with Applications to English Text"
# by Kontoyiannis et. al.
# $L_{n} = 1 + max \{l :0 \leq l \leq n, X^{l-1}_{0} = X^{-j+l-1}_{-j} \text{ for some } l \leq j \leq n \}$
# for each position, i, in the sub-sequence that occurs before the current position, start_idx
# check to see the maximum continuously equal string we can make by simultaneously extending from i and start_idx
for start_idx in range(1,data_len):
max_subsequence_matched = 0
for i in range(0,start_idx):
# for( int i = 0; i < start_idx; i++ )
# {
j = 0
#increase the length of the substring starting at j and start_idx
#while they are the same keeping track of the length
while( (start_idx+j < data_len) and (i+j < start_idx) and (data[i+j] == data[start_idx+j]) ):
j = j + 1
if j > max_subsequence_matched:
max_subsequence_matched = j;
#L_{n} is obtained by adding 1 to the longest match-length
output[start_idx] = max_subsequence_matched + 1;
return output
if __name__ == '__main__':
#Read dataset
data = np.random.randint(2,size=2000)
#Number of distinct locations
N = len(np.unique(data))
#True entropy
lambdai = matchfinder(data)
Etrue = math.pow(sum( [ lambdai[i] / math.log(i+1,2) for i in range(1,len(data))] ) * (1.0/len(data)),-1)
S = Etrue
#use Fano's inequality to compute the predictability
func = lambda x: (-(x*log(x,2).real+(1-x)*log(1-x,2).real)+(1-x)*log(N-1,2).real ) - S
ub = fsolve(func, 0.9)[0]
print ub
matchfinder函数通过查找最长匹配找到熵并向其添加1(=之前未见过的最短子串)。然后使用Fano的不等式计算可预测性。
可能是什么问题?
谢谢!
答案 0 :(得分:2)
熵函数似乎是错误的。 参考论文 Song,C.,Qu,Z.,Blumm,N。,&amp; Barabási,A。L.(2010)。人类流动性的可预测性限制。科学,327(5968),1018-1021。你提到过,实际熵是通过基于Lempel-Ziv数据压缩的算法估算的:
在代码中它看起来像这样:
Etrue = math.pow((np.sum(lambdai)/ n),-1)*log(n,2).real
其中n是时间序列的长度。
请注意,我们使用不同的对数基数而不是给定的公式。然而,由于Fano不等式的对数基数为2,因此使用相同的基数进行熵计算似乎是合乎逻辑的。另外,我不确定你为什么从第一个而不是零索引开始求和。
所以现在把它包装成功能,例如:
def solve(locations, size):
data = np.random.randint(locations,size=size)
N = len(np.unique(data))
n = float(len(data))
print "Distinct locations: %i" % N
print "Time series length: %i" % n
#True entropy
lambdai = matchfinder(data)
#S = math.pow(sum([lambdai[i] / math.log(i + 1, 2) for i in range(1, len(data))]) * (1.0 / len(data)), -1)
Etrue = math.pow((np.sum(lambdai)/ n),-1)*log(n,2).real
S = Etrue
print "Maximum entropy: %2.5f" % log(locations,2).real
print "Real entropy: %2.5f" % S
func = lambda x: (-(x * log(x, 2).real + (1 - x) * log(1 - x, 2).real) + (1 - x) * log(N - 1, 2).real) - S
ub = fsolve(func, 0.9)[0]
print "Upper bound of predictability: %2.5f" % ub
return ub
2个地点的输出
Distinct locations: 2
Time series length: 10000
Maximum entropy: 1.00000
Real entropy: 1.01441
Upper bound of predictability: 0.50013
3个地点的输出
Distinct locations: 3
Time series length: 10000
Maximum entropy: 1.58496
Real entropy: 1.56567
Upper bound of predictability: 0.41172
当 n 接近无穷大时,Lempel-Ziv压缩收敛到实熵,这就是为什么对于2个位置情况,它略高于最大限制。
我不确定你是否正确解释了lambda的定义。它被定义为“从位置i开始的最短子串的长度,它从先前不会从位置1出现到i-1”,所以当我们到达某个点时,其他子串不是唯一的再过,你的匹配算法会给它长度总是高于子串的长度,而它应该等于0,因为不存在唯一的子串。
为了更清楚,让我们举一个简单的例子。如果位置数组看起来像:
[1 0 0 1 0 0]
然后我们可以看到,在前三个位置模式再次重复之后。这意味着从第四个位置最短的唯一子串不存在,因此它等于0.所以输出(lambda)应如下所示:
[1 1 2 0 0 0]
但是,您对该案例的函数将返回:
[1 1 2 4 3 2]
我重写了匹配功能来处理这个问题:
def matchfinder2(data):
data_len = len(data)
output = np.zeros(len(data))
output[0] = 1
for start_idx in range(1,data_len):
max_subsequence_matched = 0
for i in range(0,start_idx):
j = 0
end_distance = data_len - start_idx #length left to the end of sequence (including current index)
while( (start_idx+j < data_len) and (i+j < start_idx) and (data[i+j] == data[start_idx+j]) ):
j = j + 1
if j == end_distance: #check if j has reached the end of sequence
output[start_idx::] = np.zeros(end_distance) #if yes fill the rest of output with zeros
return output #end function
elif j > max_subsequence_matched:
max_subsequence_matched = j;
output[start_idx] = max_subsequence_matched + 1;
return output
当然,差异很小,因为结果只会改变序列的一小部分。