OpenCV undistortPoints没有给出失真模型的精确逆

时间:2017-05-17 11:54:10

标签: c++ opencv image-processing computer-vision

我正在使用OpenCV的失真模型进行一些测试。基本上我所做的是,实现失真方程,看看cv :: undistortPoints函数是否给出了这些方程的逆。我意识到cv::undistortPoints并没有完全给出扭曲方程的逆。当我看到这个时,我去了cv :: undistortPoints的实现,并意识到在计算失真模型的逆的iterative process的最终条件下,OpenCV总是进行5次迭代(如果没有失真系数)提供给函数它实际上进行0次迭代)并且不对未失真点使用任何误差度量以查看它是否精确地不失真。考虑到这一点,我复制并修改了迭代过程的终止条件,并考虑了错误度量。这给了我失真模型的精确逆。显示此信息的代码附在本文末尾。我的问题是:

这是否会发生,因为OpenCV更喜欢性能(花费更少的时间)而不是准确性(花费更多时间)或者这只是一个"错误"? (很明显,对于终止条件,我建议函数将花费更多时间来解决每个点的问题)

非常感谢!

#include <opencv2/core.hpp>
#include <opencv2/imgproc.hpp>
#include <iostream>

using namespace cv;

// This is a copy of the opencv implementation
void cvUndistortPoints_copy( const CvMat* _src, CvMat* _dst, const CvMat* _cameraMatrix,
                   const CvMat* _distCoeffs,
                   const CvMat* matR, const CvMat* matP )
{
    double A[3][3], RR[3][3], k[8]={0,0,0,0,0,0,0,0}, fx, fy, ifx, ify, cx, cy;
    CvMat matA=cvMat(3, 3, CV_64F, A), _Dk;
    CvMat _RR=cvMat(3, 3, CV_64F, RR);
    const CvPoint2D32f* srcf;
    const CvPoint2D64f* srcd;
    CvPoint2D32f* dstf;
    CvPoint2D64f* dstd;
    int stype, dtype;
    int sstep, dstep;
    int i, j, n, iters = 1;

    CV_Assert( CV_IS_MAT(_src) && CV_IS_MAT(_dst) &&
        (_src->rows == 1 || _src->cols == 1) &&
        (_dst->rows == 1 || _dst->cols == 1) &&
        _src->cols + _src->rows - 1 == _dst->rows + _dst->cols - 1 &&
        (CV_MAT_TYPE(_src->type) == CV_32FC2 || CV_MAT_TYPE(_src->type) == CV_64FC2) &&
        (CV_MAT_TYPE(_dst->type) == CV_32FC2 || CV_MAT_TYPE(_dst->type) == CV_64FC2));

    CV_Assert( CV_IS_MAT(_cameraMatrix) &&
        _cameraMatrix->rows == 3 && _cameraMatrix->cols == 3 );

    cvConvert( _cameraMatrix, &matA );

    if( _distCoeffs )
    {
        CV_Assert( CV_IS_MAT(_distCoeffs) &&
            (_distCoeffs->rows == 1 || _distCoeffs->cols == 1) &&
            (_distCoeffs->rows*_distCoeffs->cols == 4 ||
             _distCoeffs->rows*_distCoeffs->cols == 5 ||
             _distCoeffs->rows*_distCoeffs->cols == 8));

        _Dk = cvMat( _distCoeffs->rows, _distCoeffs->cols,
            CV_MAKETYPE(CV_64F,CV_MAT_CN(_distCoeffs->type)), k);

        cvConvert( _distCoeffs, &_Dk );
        iters = 5;
    }

    if( matR )
    {
        CV_Assert( CV_IS_MAT(matR) && matR->rows == 3 && matR->cols == 3 );
        cvConvert( matR, &_RR );
    }
    else
        cvSetIdentity(&_RR);

    if( matP )
    {
        double PP[3][3];
        CvMat _P3x3, _PP=cvMat(3, 3, CV_64F, PP);
        CV_Assert( CV_IS_MAT(matP) && matP->rows == 3 && (matP->cols == 3 || matP->cols == 4));
        cvConvert( cvGetCols(matP, &_P3x3, 0, 3), &_PP );
        cvMatMul( &_PP, &_RR, &_RR );
    }

    srcf = (const CvPoint2D32f*)_src->data.ptr;
    srcd = (const CvPoint2D64f*)_src->data.ptr;
    dstf = (CvPoint2D32f*)_dst->data.ptr;
    dstd = (CvPoint2D64f*)_dst->data.ptr;
    stype = CV_MAT_TYPE(_src->type);
    dtype = CV_MAT_TYPE(_dst->type);
    sstep = _src->rows == 1 ? 1 : _src->step/CV_ELEM_SIZE(stype);
    dstep = _dst->rows == 1 ? 1 : _dst->step/CV_ELEM_SIZE(dtype);

    n = _src->rows + _src->cols - 1;

    fx = A[0][0];
    fy = A[1][1];
    ifx = 1./fx;
    ify = 1./fy;
    cx = A[0][2];
    cy = A[1][2];

    for( i = 0; i < n; i++ )
    {
        double x, y, x0, y0;
        if( stype == CV_32FC2 )
        {
            x = srcf[i*sstep].x;
            y = srcf[i*sstep].y;
        }
        else
        {
            x = srcd[i*sstep].x;
            y = srcd[i*sstep].y;
        }

        x0 = x = (x - cx)*ifx;
        y0 = y = (y - cy)*ify;

        // compensate distortion iteratively
        int max_iters(500);
        double e(1);
        for( j = 0; j < max_iters && e>0; j++ )
        {
            double r2 = x*x + y*y;
            double icdist = (1 + ((k[7]*r2 + k[6])*r2 + k[5])*r2)/(1 + ((k[4]*r2 + k[1])*r2 + k[0])*r2);
            double deltaX = 2*k[2]*x*y + k[3]*(r2 + 2*x*x);
            double deltaY = k[2]*(r2 + 2*y*y) + 2*k[3]*x*y;
            double xant = x;
            double yant = y;
            x = (x0 - deltaX)*icdist;
            y = (y0 - deltaY)*icdist;
            e = pow(xant - x,2)+ pow(yant - y,2);
        }

        double xx = RR[0][0]*x + RR[0][1]*y + RR[0][2];
        double yy = RR[1][0]*x + RR[1][1]*y + RR[1][2];
        double ww = 1./(RR[2][0]*x + RR[2][1]*y + RR[2][2]);
        x = xx*ww;
        y = yy*ww;

        if( dtype == CV_32FC2 )
        {
            dstf[i*dstep].x = (float)x;
            dstf[i*dstep].y = (float)y;
        }
        else
        {
            dstd[i*dstep].x = x;
            dstd[i*dstep].y = y;
        }
    }
}
void undistortPoints_copy( InputArray _src, OutputArray _dst,
                          InputArray _cameraMatrix,
                          InputArray _distCoeffs,
                          InputArray _Rmat=noArray(),
                          InputArray _Pmat=noArray() )
{
    Mat src = _src.getMat(), cameraMatrix = _cameraMatrix.getMat();
    Mat distCoeffs = _distCoeffs.getMat(), R = _Rmat.getMat(), P = _Pmat.getMat();

    CV_Assert( src.isContinuous() && (src.depth() == CV_32F || src.depth() == CV_64F) &&
              ((src.rows == 1 && src.channels() == 2) || src.cols*src.channels() == 2));

    _dst.create(src.size(), src.type(), -1, true);
    Mat dst = _dst.getMat();

    CvMat _csrc = src, _cdst = dst, _ccameraMatrix = cameraMatrix;
    CvMat matR, matP, _cdistCoeffs, *pR=0, *pP=0, *pD=0;
    if( R.data )
        pR = &(matR = R);
    if( P.data )
        pP = &(matP = P);
    if( distCoeffs.data )
        pD = &(_cdistCoeffs = distCoeffs);
    cvUndistortPoints_copy(&_csrc, &_cdst, &_ccameraMatrix, pD, pR, pP);
}

// Distortion model implementation
cv::Point2d distortPoint(cv::Point2d undistorted_point,cv::Mat camera_matrix, std::vector<double> distort_coefficients){

    // Check that camera matrix is double
    if (!(camera_matrix.type() == CV_64F || camera_matrix.type() == CV_64FC1)){
        std::ostringstream oss;
        oss<<"distortPoint(): Camera matrix type is wrong. It has to be a double matrix (CV_64)";
        throw std::runtime_error(oss.str());
    }

    // Create distorted point
    cv::Point2d distortedPoint;
    distortedPoint.x = (undistorted_point.x - camera_matrix.at<double>(0,2))/camera_matrix.at<double>(0,0);
    distortedPoint.y = (undistorted_point.y - camera_matrix.at<double>(1,2))/camera_matrix.at<double>(1,1);

    // Get model
    if (distort_coefficients.size() < 4 || distort_coefficients.size() > 8 ){
        throw std::runtime_error("distortPoint(): Invalid numbrer of distortion coefficitnes.");
    }
    double k1(distort_coefficients[0]);
    double k2(distort_coefficients[1]);
    double p1(distort_coefficients[2]);// tangent distortion first coeficinet
    double p2(distort_coefficients[3]);// tangent distortion second coeficinet
    double k3(0);
    double k4(0);
    double k5(0);
    double k6(0);
    if (distort_coefficients.size() > 4)
        k3 = distort_coefficients[4];
    if (distort_coefficients.size() > 5)
        k4 = distort_coefficients[5];
    if (distort_coefficients.size() > 6)
        k5 = distort_coefficients[6];
    if (distort_coefficients.size() > 7)
        k6 = distort_coefficients[7];

    // Distort
    double xcx = distortedPoint.x;
    double ycy = distortedPoint.y;
    double r2 = pow(xcx, 2) + pow(ycy, 2);
    double r4 = pow(r2,2);
    double r6 = pow(r2,3);
    double k = (1+k1*r2+k2*r4+k3*r6)/(1+k4*r2+k5*r4+k5*r6);
    distortedPoint.x = xcx*k + 2*p1*xcx*ycy + p2*(r2+2*pow(xcx,2));
    distortedPoint.y = ycy*k + p1*(r2+2*pow(ycy,2)) + 2*p2*xcx*ycy;
    distortedPoint.x = distortedPoint.x*camera_matrix.at<double>(0,0)+camera_matrix.at<double>(0,2);
    distortedPoint.y = distortedPoint.y*camera_matrix.at<double>(1,1)+camera_matrix.at<double>(1,2);

    // Exit
    return distortedPoint;
}

int main(int argc, char** argv){

    // Camera matrix
    double cam_mat_da[] = {1486.58092,0,1046.72507,0,1489.8659,545.374244,0,0,1};
    cv::Mat cam_mat(3,3,CV_64FC1,cam_mat_da);

    // Distortion coefficients
    double dist_coefs_da[] ={-0.13827409,0.29240721,-0.00088197,-0.00090189,0};
    std::vector<double> dist_coefs(dist_coefs_da,dist_coefs_da+5);

    // Distorted Point
    cv::Point2d p0(0,0);
    std::vector<cv::Point2d> p0_v;
    p0_v.push_back(p0);

    // Undistort Point
    std::vector<cv::Point2d> ud_p_v;
    cv::undistortPoints(p0_v,ud_p_v,cam_mat,dist_coefs);
    cv::Point2d ud_p = ud_p_v[0];
    ud_p.x = ud_p.x*cam_mat.at<double>(0,0)+cam_mat.at<double>(0,2);
    ud_p.y = ud_p.y*cam_mat.at<double>(1,1)+cam_mat.at<double>(1,2);

    // Redistort Point
    cv::Point2d p = distortPoint(ud_p, cam_mat,dist_coefs);

    // Undistort Point using own termination of iterative process
    std::vector<cv::Point2d> ud_p_v_local;
    undistortPoints_copy(p0_v,ud_p_v_local,cam_mat,dist_coefs);
    cv::Point2d ud_p_local = ud_p_v_local[0];
    ud_p_local.x = ud_p_local.x*cam_mat.at<double>(0,0)+cam_mat.at<double>(0,2);
    ud_p_local.y = ud_p_local.y*cam_mat.at<double>(1,1)+cam_mat.at<double>(1,2);

    // Redistort Point
    cv::Point2d p_local = distortPoint(ud_p_local, cam_mat,dist_coefs);

    // Display results
    std::cout<<"Distorted original point: "<<p0<<std::endl;
    std::cout<<"Undistorted point (CV): "<<ud_p<<std::endl;
    std::cout<<"Distorted point (CV): "<<p<<std::endl;
    std::cout<<"Erorr in the distorted point (CV): "<<sqrt(pow(p.x-p0.x,2)+pow(p.y-p0.y,2))<<std::endl;
    std::cout<<"Undistorted point (Local): "<<ud_p_local<<std::endl;
    std::cout<<"Distorted point (Local): "<<p_local<<std::endl;
    std::cout<<"Erorr in the distorted point (Local): "<<sqrt(pow(p_local.x-p0.x,2)+pow(p_local.y-p0.y,2))<<std::endl;

    // Exit
    return 0;
}

2 个答案:

答案 0 :(得分:0)

正如所建议的,您可以从OpenCV论坛获得实际动机。但请注意,历史上OpenCV的开发时考虑了实时或接近实时的应用程序(例如Darpa Grand Challenge),因此您可以轻松找到优化速度而不是准确性的代码。

答案 1 :(得分:0)

在大多数情况下,5次迭代就足够了。什么是“足够”可以争论,但对于诸如找到最佳相机矩阵的情况,人们可以争辩说0.1像素对于许多应用来说没有太大变化。

需要注意的一点是,在某些情况下,函数不会在5次迭代中收敛。我不知道是否会出现根本无法收敛的情况。例如,当失真参数不能很好地适应失真时,会发生这种情况,因此 对于某些坐标没有精确解 。 请参阅Jensenb的回答here进行讨论。