如何在OpenCV Java中检测来自HoughLines变换的矩形

时间:2017-05-17 09:25:34

标签: java opencv

我知道这是重复的帖子,但仍然卡在实施上。 我在互联网上关注如何在OpenCV和Java中检测图像中的文档。 我提出的第一个方案就是在预处理后使用findContours进行一些图像处理,如模糊,边缘检测,在获得所有轮廓后,我可以找到最大的轮廓并假设这是一个我正在寻找的矩形但它失败了在某些情况下,例如文件没有完全像缺少一个角落。 在尝试了几次和一些新处理但根本不起作用后,我发现HoughLine转换更容易。从现在开始,我将所有线条都放在图像中,但仍然不知道接下来要做什么来定义我想要的兴趣矩形。 这是我到目前为止的实现代码: 方法1:使用findContours

Mat grayImage = new Mat();
    Mat detectedEdges = new Mat();
    // convert to grayscale
    Imgproc.cvtColor(frame, grayImage, Imgproc.COLOR_BGR2GRAY);
    // reduce noise with a 3x3 kernel
    // Imgproc.blur(grayImage, detectedEdges, new Size(3, 3));
    Imgproc.medianBlur(grayImage, detectedEdges, 9);
    // Imgproc.equalizeHist(detectedEdges, detectedEdges);
    // Imgproc.GaussianBlur(detectedEdges, detectedEdges, new Size(5, 5), 0, 0, Core.BORDER_DEFAULT);
    Mat edges = new Mat();
    // canny detector, with ratio of lower:upper threshold of 3:1
    Imgproc.Canny(detectedEdges, edges, this.threshold.getValue(), this.threshold.getValue() * 3, 3, true);
    // makes the object in white bigger
    Imgproc.dilate(edges, edges, new Mat(), new Point(-1, -1), 1); // 1
    Image imageToShow = Utils.mat2Image(edges);
    updateImageView(cannyFrame, imageToShow);
    /// Find contours
    List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
    Imgproc.findContours(edges, contours, new Mat(), Imgproc.RETR_LIST, Imgproc.CHAIN_APPROX_SIMPLE);
    // loop over the contours
    MatOfPoint2f approxCurve;
    double maxArea = 0;
    int maxId = -1;
    for (MatOfPoint contour : contours) {
        MatOfPoint2f temp = new MatOfPoint2f(contour.toArray());
        double area = Imgproc.contourArea(contour);
        approxCurve = new MatOfPoint2f();
        Imgproc.approxPolyDP(temp, approxCurve, Imgproc.arcLength(temp, true) * 0.02, true);
        if (approxCurve.total() == 4 && area >= maxArea) {
            double maxCosine = 0;
            List<Point> curves = approxCurve.toList();
            for (int j = 2; j < 5; j++) {
                double cosine = Math.abs(angle(curves.get(j % 4), curves.get(j - 2), curves.get(j - 1)));
                maxCosine = Math.max(maxCosine, cosine);
            }
            if (maxCosine < 0.3) {
                maxArea = area;
                maxId = contours.indexOf(contour);
            }
        }
    }
    MatOfPoint maxMatOfPoint = contours.get(maxId);
    MatOfPoint2f maxMatOfPoint2f = new MatOfPoint2f(maxMatOfPoint.toArray());
    RotatedRect rect = Imgproc.minAreaRect(maxMatOfPoint2f);
    System.out.println("Rect angle: " + rect.angle);
    Point points[] = new Point[4];
    rect.points(points);
    for (int i = 0; i < 4; ++i) {
        Imgproc.line(frame, points[i], points[(i + 1) % 4], new Scalar(255, 255, 25), 3);
    }

    Mat dest = new Mat();
    frame.copyTo(dest, frame);
    return dest;

Apparch 2:使用HoughLine转换

// STEP 1: Edge detection
    Mat grayImage = new Mat();
    Mat detectedEdges = new Mat();
    Vector<Point> start = new Vector<Point>();
    Vector<Point> end = new Vector<Point>();
    // convert to grayscale
    Imgproc.cvtColor(frame, grayImage, Imgproc.COLOR_BGR2GRAY);
    // reduce noise with a 3x3 kernel
    // Imgproc.blur(grayImage, detectedEdges, new Size(3, 3));
    Imgproc.medianBlur(grayImage, detectedEdges, 9);
    // Imgproc.equalizeHist(detectedEdges, detectedEdges);
    // Imgproc.GaussianBlur(detectedEdges, detectedEdges, new Size(5, 5), 0, 0, Core.BORDER_DEFAULT);
    // AdaptiveThreshold -> classify as either black or white
    // Imgproc.adaptiveThreshold(detectedEdges, detectedEdges, 255, Imgproc.ADAPTIVE_THRESH_MEAN_C, Imgproc.THRESH_BINARY, 5, 2);
    // Imgproc.Sobel(detectedEdges, detectedEdges, -1, 1, 0);
    Mat edges = new Mat();
    // canny detector, with ratio of lower:upper threshold of 3:1
    Imgproc.Canny(detectedEdges, edges, this.threshold.getValue(), this.threshold.getValue() * 3, 3, true);
    // apply gaussian blur to smoothen lines of dots
    Imgproc.GaussianBlur(edges, edges, new org.opencv.core.Size(5, 5), 5);
    // makes the object in white bigger
    Imgproc.dilate(edges, edges, new Mat(), new Point(-1, -1), 1); // 1
    Image imageToShow = Utils.mat2Image(edges);
    updateImageView(cannyFrame, imageToShow);
    // STEP 2: Line detection
    // Do Hough line
    Mat lines = new Mat();
    int minLineSize = 50;
    int lineGap = 10;
    Imgproc.HoughLinesP(edges, lines, 1, Math.PI / 720, (int) this.threshold.getValue(), this.minLineSize.getValue(), lineGap);
    System.out.println("MinLineSize: " + this.minLineSize.getValue());
    System.out.println(lines.rows());
    for (int i = 0; i < lines.rows(); i++) {
        double[] val = lines.get(i, 0);
        Point tmpStartP = new Point(val[0], val[1]);
        Point tmpEndP = new Point(val[2], val[3]);
        start.add(tmpStartP);
        end.add(tmpEndP);
        Imgproc.line(frame, tmpStartP, tmpEndP, new Scalar(255, 255, 0), 2);
    }

    Mat dest = new Mat();
    frame.copyTo(dest, frame);
    return dest;

HoughLine result 1 HoughLine result 2

如何从HoughLine结果中检测所需的矩形? 有人可以给我下一步来完成HoughLine变换方法。 任何帮助都是适当的。我已经坚持了一段时间。

感谢您阅读本文。

1 个答案:

答案 0 :(得分:3)

这个答案几乎是我发布的另外两个答案(herehere)的混合。但是我用于其他答案的管道可以根据您的情况稍微改进一下。所以我认为值得发布一个新答案。

有很多方法可以达到你想要的效果。但是,我不认为这里需要使用HoughLinesP进行线路检测。所以这是我在你的样品上使用的管道:

步骤1:检测egdes

  • 调整输入图片,如果它太大(我注意到此管道在给定输入图像的缩小版本上效果更好)
  • 模糊灰度输入并使用 Canny过滤器检测边缘

第2步:找到卡片的角落

  • 计算轮廓
  • 长度排序轮廓,只保留最大
  • 生成此轮廓的凸包
  • 使用approxPolyDP 简化凸包(这应该是 quadrilateral
  • 从近似多边形
  • 中创建蒙版
  • 返回四边形的4个点

第3步:Homography

  • 使用findHomography查找纸张的仿射转换(在步骤2 处找到4个角点)
  • Warp 使用计算单应矩阵的输入图像

注意:当然,一旦在输入图像的缩小版本上找到纸张的边角,您就可以轻松计算全尺寸输入图像上角落的位置。这是为了使扭曲的纸张具有最佳分辨率。

结果如下: enter image description here

vector<Point> getQuadrilateral(Mat & grayscale, Mat& output)
{
    Mat approxPoly_mask(grayscale.rows, grayscale.cols, CV_8UC1);
    approxPoly_mask = Scalar(0);

    vector<vector<Point>> contours;
    findContours(grayscale, contours, RETR_EXTERNAL, CHAIN_APPROX_NONE);

    vector<int> indices(contours.size());
    iota(indices.begin(), indices.end(), 0);

    sort(indices.begin(), indices.end(), [&contours](int lhs, int rhs) {
        return contours[lhs].size() > contours[rhs].size();
    });

    /// Find the convex hull object for each contour
    vector<vector<Point> >hull(1);
    convexHull(Mat(contours[indices[0]]), hull[0], false);

    vector<vector<Point>> polygon(1);
    approxPolyDP(hull[0], polygon[0], 20, true);
    drawContours(approxPoly_mask, polygon, 0, Scalar(255));
    imshow("approxPoly_mask", approxPoly_mask);

    if (polygon[0].size() >= 4) // we found the 4 corners
    {
        return(polygon[0]);
    }

    return(vector<Point>());
}


int main(int argc, char** argv)
{

    Mat input = imread("papersheet1.JPG");
    resize(input, input, Size(), 0.1, 0.1);
    Mat input_grey;
    cvtColor(input, input_grey, CV_BGR2GRAY);
    Mat threshold1;
    Mat edges;
    blur(input_grey, input_grey, Size(3, 3));
    Canny(input_grey, edges, 30, 100);


    vector<Point> card_corners = getQuadrilateral(edges, input);
    Mat warpedCard(400, 300, CV_8UC3);
    if (card_corners.size() == 4)
    {
        Mat homography = findHomography(card_corners, vector<Point>{Point(warpedCard.cols, warpedCard.rows), Point(0, warpedCard.rows), Point(0, 0), Point(warpedCard.cols, 0)});
        warpPerspective(input, warpedCard, homography, Size(warpedCard.cols, warpedCard.rows));
    }

    imshow("warped card", warpedCard);
    imshow("edges", edges);
    imshow("input", input);
    waitKey(0);

    return 0;
}

这是C ++代码,但它不应该难以翻译成Java。