我正在寻找一种合理的方法来确定项目团队成员之间的相似性,这些成员在四个方面都得分。
下面添加了一个数据摘录,并在dput的问题末尾添加了一个稍大的示例
pnum invid dom_st prim_st pat_st net_st
1: 7265873 24104 0 1 1 0
2: 7266757 38775 1 2 2 3
3: 7266757 38776 1 2 2 3
4: 7268524 34281 1 3 2 2
5: 7268524 34282 1 3 2 2
6: 7272620 20002 0 1 2 0
7: 7272620 22284 0 1 2 0
8: 7273253 31921 1 1 1 4
9: 7273253 31922 1 1 1 4
10: 7283628 26841 1 1 1 2
11: 7283628 26843 1 1 1 2
12: 7289442 17763 2 11 48 10
13: 7289442 17764 2 11 63 9
14: 7289525 38087 0 1 1 0
15: 7289525 38088 0 2 1 0
16: 7289525 38089 0 3 1 1
目标是为每个'pnum'创建一个相似性度量,用于比较所有'invid'中的最后四个列值。每个'pnum'的'invid'数量在2到26之间变化。
编辑1: 具体来说,对于'pnum'7266757(第2行和第3行),我想要在invid 38775(1,2,2,3)和invid 38776(1,2,2,3)之间的相似性,所以这个应该给出一个1.对于'pnum'7289525(第14-16行),我想要三个行向量(0,1,1,0),(0,2,1,0)和(0, 3,1,1)。这给出了以下内容:
simil(matrix(c(0,1,1,0,0,2,1,0,0,3,1,1), nrow = 3, byrow = TRUE), method = "cosine")
1 2
2 0.9486833
3 0.8528029 0.9438798
在最后一步(可能是一个单独的公式)中,我希望“将”矩阵(对于n> 2的团队)“减少”为理想情况下将在0和1之间约束的单个值。一种简单的方法这样做只是采取矩阵结果的平均值,但也许有一个更聪明的方法?
我尝试了以下内容(数据存储在data.table'dt'中,但是出现了以下错误:
library('proxy')
sim <- dt[, simil(dt, method="cosine"), by = pnum]
Error in .Call("R_cosine", c(4262069, 4262069, 4262069, 4273567, 4273567, : negative length vectors are not allowed
任何建议更成功地将此功能或类似功能应用于data.table和创意如何将相似性矩阵降低到单个点值将非常受欢迎。
总数据集约为150,000行,约92,000个项目'pnum'。
structure(list(pnum = c(7265873, 7266757, 7266757, 7268524, 7268524,
7272620, 7272620, 7273253, 7273253, 7283628, 7283628, 7289442,
7289442, 7289525, 7289525, 7289525, 7301987, 7301987, 7305259,
7305259, 7307986, 7307986, 7310332, 7310332, 7333490, 7333490,
7333502, 7333502, 7414991, 7414991), invid = c(24104, 38775,
38776, 34281, 34282, 20002, 22284, 31921, 31922, 26841, 26843,
17763, 17764, 38087, 38088, 38089, 34843, 38412, 32514, 33946,
28587, 28588, 17204, 17205, 28587, 28588, 28587, 28588, 37008,
37009), dom_st = c(0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 2, 2, 0,
0, 0, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0), prim_st = c(1,
2, 2, 3, 3, 1, 1, 1, 1, 1, 1, 11, 11, 1, 2, 3, 3, 3, 1, 1, 5,
5, 3, 3, 5, 5, 5, 5, 3, 3), pat_st = c(1, 2, 2, 2, 2, 2, 2, 1,
1, 1, 1, 48, 63, 1, 1, 1, 1, 1, 1, 1, 5, 5, 14, 14, 5, 5, 5,
5, 1, 1), net_st = c(0, 3, 3, 2, 2, 0, 0, 4, 4, 2, 2, 10, 9,
0, 0, 1, 2, 2, 0, 0, 2, 2, 4, 4, 2, 2, 2, 2, 0, 0)), .Names = c("pnum",
"invid", "dom_st", "prim_st", "pat_st", "net_st"), class = c("data.table",
"data.frame"), row.names = c(NA, -30L), .internal.selfref = <pointer: 0x0000000000230788>)
答案 0 :(得分:2)
这对我有用:
1. adb shell
2. run-as com.your.package
3. ls -> You would see the databases here.
4. cp /data/data/com.your.package/databases/you-db-name /sdcard/file_to_write"
注意:我需要将library(data.table)
setDT(DT)
# find relevant columns for call to simil
cols <- stringr::str_subset(names(DT), "_st$")
cols
#[1] "dom_st" "prim_st" "pat_st" "net_st"
DT[, (mean(proxy::simil(.SD, method="cosine"))), .SDcols = cols, by = pnum]
# pnum V1
# 1: 7265873 NaN
# 2: 7266757 1.0000000
# 3: 7268524 1.0000000
# 4: 7272620 1.0000000
# 5: 7273253 1.0000000
# 6: 7283628 1.0000000
# 7: 7289442 0.9968006
# 8: 7289525 0.9151220
# 9: 7301987 1.0000000
#10: 7305259 1.0000000
#11: 7307986 1.0000000
#12: 7310332 1.0000000
#13: 7333490 1.0000000
#14: 7333502 1.0000000
#15: 7414991 1.0000000
表达式包装在parantheses中。没有,我收到一条我不明白的错误信息:
j
FUN错误(X [[i]],...):
列无效:它有尺寸。无法格式化它。如果它是data.table(table())的结果,请使用as.data.table(table())。
如果你想得到每个DT[, mean(proxy::simil(.SD, method="cosine")), .SDcols = cols, by = pnum]
的相似性矩阵(在对它们求平均值之前),我建议使用pnum
返回一个列表:
lapply()
OP增加了一项额外要求,即他想为每个pnums <- DT[, unique(pnum)]
results <- lapply(pnums, function(x) {
proxy::simil(DT[pnum == x, cols, with = FALSE], method="cosine")
})
setNames(results, pnums)
#$`7265873`
#simil(0)
#
#$`7266757`
# 1
#2 1
#
#$`7268524`
# 1
#2 1
#
#$`7272620`
# 1
#2 1
#
#$`7273253`
# 1
#2 1
#
#$`7283628`
# 1
#2 1
#
#$`7289442`
# 1
#2 0.9968006
#
#$`7289525`
# 1 2
#2 0.9486833
#3 0.8528029 0.9438798
#
#$`7301987`
# 1
#2 1
#
#$`7305259`
# 1
#2 1
#
#$`7307986`
# 1
#2 1
#
#$`7310332`
# 1
#2 1
#
#$`7333490`
# 1
#2 1
#
#$`7333502`
# 1
#2 1
#
#$`7414991`
# 1
#2 1
计算一些汇总值。这可以通过
pnum
DT[, {
sim_mat <- proxy::simil(.SD, method="cosine")
list(min = min(sim_mat), max = max(sim_mat),
mean = mean(sim_mat), sd = sd(sim_mat))
}, .SDcols = cols, by = pnum]
# pnum min max mean sd
# 1: 7265873 Inf -Inf NaN NA
# 2: 7266757 1.0000000 1.0000000 1.0000000 NA
# 3: 7268524 1.0000000 1.0000000 1.0000000 NA
# 4: 7272620 1.0000000 1.0000000 1.0000000 NA
# 5: 7273253 1.0000000 1.0000000 1.0000000 NA
# 6: 7283628 1.0000000 1.0000000 1.0000000 NA
# 7: 7289442 0.9968006 0.9968006 0.9968006 NA
# 8: 7289525 0.8528029 0.9486833 0.9151220 0.05402336
# 9: 7301987 1.0000000 1.0000000 1.0000000 NA
#10: 7305259 1.0000000 1.0000000 1.0000000 NA
#11: 7307986 1.0000000 1.0000000 1.0000000 NA
#12: 7310332 1.0000000 1.0000000 1.0000000 NA
#13: 7333490 1.0000000 1.0000000 1.0000000 NA
#14: 7333502 1.0000000 1.0000000 1.0000000 NA
#15: 7414991 1.0000000 1.0000000 1.0000000 NA