Python,Cosine与调整余弦相似度的相似性

时间:2017-03-20 08:01:32

标签: python numpy scikit-learn similarity cosine-similarity

我希望将Collaborative Filtering with Python通过余弦相似度转换为调整余弦相似度。

基于余弦相似度的实现如下所示:

import pandas as pd
import numpy as np
from scipy.spatial.distance import cosine
from scipy.spatial.distance import pdist, squareform

data = pd.read_csv("C:\\Sample.csv")
data_germany = data.drop("Name", 1)
data_ibs = pd.DataFrame(index=data_germany.columns,columns=data_germany.columns)

for i in range(0,len(data_ibs.columns)) :
    for j in range(0,len(data_ibs.columns)) :
      data_ibs.ix[i,j] = 1-cosine(data_germany.ix[:,i],data_germany.ix[:,j])

data_neighbours = pd.DataFrame(index=data_ibs.columns,columns=range(1,6))

for i in range(0,len(data_ibs.columns)):
    data_neighbours.ix[i,:] = data_ibs.ix[0:,i].sort_values(ascending=False)[:5].index

df = data_neighbours.head().ix[:,2:6]
print df

正在使用的 Sample.csv 看起来像:

Sample.csv

其中1表示用户购买了特定水果,相反0表示用户没有购买特定水果

当我运行上面的代码时,这就是我得到的:

results1

其中行是水果,列是相似性排名(按降序排列)。在此示例中,PearApple最相似,Melon是第二个最相似的,依此类推。

我在调整余弦相似度上遇到了this post,我尝试将该方法集成到我的代码中。在这种情况下,数据是用户给水果的评分:

ratings

这是我的尝试:

data_ibs = pd.DataFrame(index=data_germany.columns,columns=data_germany.columns)
M_u = data_ibs.mean(axis=1)
M = np.asarray(data_ibs)
item_mean_subtracted = M - M_u[:, None]

for i in range(0,len(data_ibs.columns)) :
    for j in range(0,len(data_ibs.columns)) :
      data_ibs.ix[i,j]  = 1 - squareform(pdist(item_mean_subtracted.T, "cosine")) ### error

data_neighbours = pd.DataFrame(index=data_ibs.columns,columns=range(1,6))

for i in range(0,len(data_ibs.columns)):
    data_neighbours.ix[i,:] = data_ibs.ix[0:,i].sort_values(ascending=False)[:5].index

df = data_neighbours.head().ix[:,2:6]

但是我被卡住了。我的问题是:如何将调整余弦相似度成功应用到此样本中?

1 个答案:

答案 0 :(得分:2)

这是基于NumPy的解决方案。

首先,我们将评级数据存储到数组中:

fruits = np.asarray(['Apple', 'Orange', 'Pear', 'Grape', 'Melon'])
M = np.asarray(data.loc[:, fruits])

然后我们计算调整后的余弦相似度矩阵:

M_u = M.mean(axis=1)
item_mean_subtracted = M - M_u[:, None]
similarity_matrix = 1 - squareform(pdist(item_mean_subtracted.T, 'cosine'))

最后,我们按照相似性的递减顺序对结果进行排序:

indices = np.fliplr(np.argsort(similarity_matrix, axis=1)[:,:-1])
result = np.hstack((fruits[:, None], fruits[indices]))

<强>样本

In [49]: M
Out[49]: 
array([[ 0, 10,  0,  1,  0],
       [ 6,  0,  0,  0,  2],
       [ 1,  0, 20,  0,  1],
       [ 0,  3,  6,  0, 18],
       [ 3,  0,  2,  0,  0],
       [ 0,  2,  0,  5,  0]])

In [50]: np.set_printoptions(precision=2)

In [51]: similarity_matrix
Out[51]: 
array([[ 1.  ,  0.01, -0.41,  0.48, -0.44],
       [ 0.01,  1.  , -0.57,  0.37, -0.26],
       [-0.41, -0.57,  1.  , -0.56, -0.19],
       [ 0.48,  0.37, -0.56,  1.  , -0.51],
       [-0.44, -0.26, -0.19, -0.51,  1.  ]])

In [52]: result
Out[52]: 
array([['Apple', 'Grape', 'Orange', 'Pear', 'Melon'],
       ['Orange', 'Grape', 'Apple', 'Melon', 'Pear'],
       ['Pear', 'Melon', 'Apple', 'Grape', 'Orange'],
       ['Grape', 'Apple', 'Orange', 'Melon', 'Pear'],
       ['Melon', 'Pear', 'Orange', 'Apple', 'Grape']], 
      dtype='|S6')