我需要在大矩阵上使用Scikit-learn sklearn.metric.pairwise.cosine_similarity 。 对于某些优化,我只需要计算矩阵的某些行,所以我尝试了不同的方法。
我发现在某些情况下结果根据向量的大小而不同,我在这个测试用例中看到了这种奇怪的行为(大向量,转置和估计余弦):
from sklearn.metrics.pairwise import cosine_similarity
from scipy import spatial
import numpy as np
from scipy.sparse import csc_matrix
size=200
a=np.array([[1,0,1,0]]*size)
sparse_a=csc_matrix(a.T)
#standard cosine similarity between the whole transposed matrix, take only the first row
res1=cosine_similarity(a.T,a.T)[0]
#take the row obtained by the multiplication of the first row of the transposed matrix with transposed matrix itself (optimized for the first row calculus only)
res2=cosine_similarity([a.T[0]],a.T)[0]
#sparse matrix implementation with the transposed, which should be faster
res3=cosine_similarity(sparse_a,sparse_a)[0]
print("res1: ",res1)
print("res2: ",res2)
print("res3: ",res3)
print("res1 vs res2: ",res1==res2)
print("res1 vs res3: ",res1==res3)
print("res2 vs res3: ", res2==res3)
如果" 尺寸"设置为 200 我得到了这个结果,没关系:
res1: [ 1. 0. 1. 0.]
res2: [ 1. 0. 1. 0.]
res3: [ 1. 0. 1. 0.]
res1 vs res2: [ True True True True]
res1 vs res3: [ True True True True]
res2 vs res3: [ True True True True]
但是如果" 尺寸"设置为 2000 或更多,会发生一些奇怪的事情:
res1: [ 1. 0. 1. 0.]
res2: [ 1. 0. 1. 0.]
res3: [ 1. 0. 1. 0.]
res1 vs res2: [False True False True]
res1 vs res3: [False True False True]
res2 vs res3: [ True True True True]
有人知道我错过了什么吗?
提前致谢
答案 0 :(得分:0)
为了比较numpy.array
,您必须使用np.isclose
而不是等于运算符。尝试:
from sklearn.metrics.pairwise import cosine_similarity
from scipy import spatial
import numpy as np
from scipy.sparse import csc_matrix
size=2000
a=np.array([[1,0,1,0]]*size)
sparse_a=csc_matrix(a.T)
#standard cosine similarity between the whole transposed matrix, take only the first row
res1=cosine_similarity(a.T,a.T)[0]
#take the row obtained by the multiplication of the first row of the transposed matrix with transposed matrix itself (optimized for the first row calculus only)
res2=cosine_similarity([a.T[0]],a.T)[0]
#sparse matrix implementation with the transposed, which should befaster
res3=cosine_similarity(sparse_a,sparse_a)[0]
print("res1: ",res1)
print("res2: ",res2)
print("res3: ",res3)
print("res1 vs res2: ", np.isclose(res1, res2))
print("res1 vs res3: ", np.isclose(res1, res3))
print("res2 vs res3: ", np.isclose(res2, res2))
结果是:
res1: [ 1. 0. 1. 0.]
res2: [ 1. 0. 1. 0.]
res3: [ 1. 0. 1. 0.]
res1 vs res2: [ True True True True]
res1 vs res3: [ True True True True]
res2 vs res3: [ True True True True]
正如所料。