我正在用Python编写一个基本的Hough变换 - 我相信我在概念上是正确的,但是,我的结果看起来是偏移的,因此它是分开的顶部和底部,而不是连续的。我想得到的应该是这样的:
但我明白了:
哪个接近,但似乎在中间严重分裂!我确信这是由于我对rho / theta数组的索引,但是尽管我做了很多改动,但我无法解决这个问题!对我的错误步骤以及我需要改变的任何解释都将非常感激!
我的源代码应该是完整的并直接运行...
非常感谢
大卫
来源
import numpy as np
import matplotlib.pyplot as mpl
cols, rows = [256,256] # Set size of image
grey_levels = 256 #Grey levels in image
testPixels = [[0 for x in range(rows)] for y in range(cols)] # Convert to black and white
testPixels[100][100] = 255 #Set 3 pixels to white
testPixels[200][200] = 255
testPixels[150][150] = 255
rho_size = int(np.sqrt(rows**2 + cols**2)) #Max possible rho is diagonal dist.
angle_size = 360 #Test all angles
houghspace = [[0 for x in range(rho_size)] for y in range(angle_size)] # Create hough space array
for x in range(rows): # For each rows
for y in range(cols): # For each cols
if testPixels[x][y] == 0: #Skip if not edge point
continue
for theta in range(angle_size):
rho = int(x*np.cos(np.deg2rad(theta)) + y*np.sin(np.deg2rad(theta)))
houghspace[theta][rho] = 255
houghspace = [list(a) for a in zip(*houghspace)] #Transpose to get angle on x axis
fig = mpl.figure() # Create a figure
fig.add_subplot(1, 2, 1).set_title("Original")
mpl.imshow(np.uint8(np.dstack((testPixels,testPixels,testPixels))),cmap='Greys')
fig.add_subplot(1, 2, 2).set_title("Hough Transform")
mpl.imshow(np.uint8(np.dstack((houghspace, houghspace, houghspace))),cmap='Greys')
mpl.show()
答案 0 :(得分:1)
当您将houghspace
创建为列表列表时,您已将指数混淆了。请更喜欢使用numpy数组,因为它会使索引更清晰。沿着x轴,角度theta
改变,并且沿着y轴,rho
改变。但是,在使用列表理解来定义houghspace
时,您已经采用了另一种方式。
以下是正确的代码。请注意以##
rho_size = int(np.sqrt(rows**2 + cols**2)) #Max possible rho is diagonal dist.
angle_size = 360 #Test all angles
##houghspace = [[0 for y in range(angle_size) for x in range(2*rho_size)]] #buggy
houghspace = [[0 for x in range(angle_size)] for y in range(rho_size*2)] #correct
## Also double the rho_size, so that both crust and trough of sinusoidal is visible
for x in range(rows): # For each rows
for y in range(cols): # For each cols
if testPixels[x][y] == 0: #Skip if not edge point
continue
for theta in range(angle_size):
rho = int(x*np.cos(np.deg2rad(theta)) + y*np.sin(np.deg2rad(theta))) \
+ rho_size ## also add rho_size
##houghspace[theta][rho] = 255 ## buggy
houghspace[rho][theta] += 255 # <==== indices switched & it's +=
##houghspace = [list(a) for a in zip(*houghspace)]
##Transposing not needed now (we switched indices)
fig = mpl.figure() # Create a figure
fig.add_subplot(1, 2, 1).set_title("Original")
mpl.imshow(np.uint8(np.dstack((testPixels,testPixels,testPixels))),cmap='Greys')
fig.add_subplot(1, 2, 2).set_title("Hough Transform")
mpl.imshow(np.uint8(np.dstack((houghspace, houghspace, houghspace))),cmap='Greys')
mpl.show()
我得到以下情节: