我必须解决一个问题,我必须找到从距离矩阵开始链接所有点的最短路径。它几乎就像一个旅行推销员问题,除了我不需要通过返回起点来关闭我的路径。我发现Held-Karp algorithm(Python)很好地解决了TSP,但总是计算返回起点的距离。所以现在它给我留下了3个问题:
我已将held_karp()
函数从Python翻译为PHP,对于我的解决方案,我很乐意使用这两种语言。
function held_karp($matrix) {
$nb_nodes = count($matrix);
# Maps each subset of the nodes to the cost to reach that subset, as well
# as what node it passed before reaching this subset.
# Node subsets are represented as set bits.
$c = [];
# Set transition cost from initial state
for($k = 1; $k < $nb_nodes; $k++) $c["(".(1 << $k).",$k)"] = [$matrix[0][$k], 0];
# Iterate subsets of increasing length and store intermediate results
# in classic dynamic programming manner
for($subset_size = 2; $subset_size < $nb_nodes; $subset_size++) {
$combinaisons = every_combinations(range(1, $nb_nodes - 1), $subset_size, false);
foreach($combinaisons AS $subset) {
# Set bits for all nodes in this subset
$bits = 0;
foreach($subset AS $bit) $bits |= 1 << $bit;
# Find the lowest cost to get to this subset
foreach($subset AS $bk) {
$prev = $bits & ~(1 << $bk);
$res = [];
foreach($subset AS $m) {
if(($m == 0)||($m == $bk)) continue;
$res[] = [$c["($prev,$m)"][0] + $matrix[$m][$bk], $m];
}
$c["($bits,$bk)"] = min($res);
}
}
}
# We're interested in all bits but the least significant (the start state)
$bits = (2**$nb_nodes - 1) - 1;
# Calculate optimal cost
$res = [];
for($k = 1; $k < $nb_nodes; $k++) $res[] = [$c["($bits,$k)"][0] + $matrix[$k][0], $k];
list($opt, $parent) = min($res);
# Backtrack to find full path
$path = [];
for($i = 0; $i < $nb_nodes - 1; $i++) {
$path[] = $parent;
$new_bits = $bits & ~(1 << $parent);
list($scrap, $parent) = $c["($bits,$parent)"];
$bits = $new_bits;
}
# Add implicit start state
$path[] = 0;
return [$opt, array_reverse($path)];
}
如果您需要知道every_combinations()函数的工作原理
function every_combinations($set, $n = NULL, $order_matters = true) {
if($n == NULL) $n = count($set);
$combinations = [];
foreach($set AS $k => $e) {
$subset = $set;
unset($subset[$k]);
if($n == 1) $combinations[] = [$e];
else {
$subcomb = every_combinations($subset, $n - 1, $order_matters);
foreach($subcomb AS $s) {
$comb = array_merge([$e], $s);
if($order_matters) $combinations[] = $comb;
else {
$needle = $comb;
sort($needle);
if(!in_array($needle, $combinations)) $combinations[] = $comb;
}
}
}
}
return $combinations;
}
答案 0 :(得分:1)
是的,答案可能不同。例如,如果图形有4个顶点和下面的无向边:
1-2 1
2-3 1
3-4 1
1-4 100
1-3 2
2-4 2
最佳路径为1-2-3-4
,权重为1 + 1 + 1 = 3,但同一周期的权重为1 + 1 + 1 + 100 = 103.但是,周期的权重为{{ 1}}为2 + 1 + 2 + 1 = 6且该路径的权重为2 + 1 + 2 = 5,因此最优周期和最优路径不同。
如果你正在寻找路径而不是循环,你可以使用相同的算法,但是你不需要将最后一条边的权重加到起始顶点,即
1-3-4-2
应为for($k = 1; $k < $nb_nodes; $k++) $res[] = [$c["($bits,$k)"][0] + $matrix[$k][0], $k];