我想让tensorflow的初始v3为图像提供标签。我的目标是将JPEG图像转换为初始神经网络接受的输入。我不知道如何首先处理图像,以便它可以与Google Inception的v3模型一起运行。原始的tensorflow项目在这里: https://github.com/tensorflow/models/tree/master/inception
最初,所有图像都在数据集中,整个数据集首先传递给ImageProcessing.py中的input()或distorted_inputs()。处理数据集中的图像并将其传递给train()或eval()方法(这两种方法都有效)。问题是我想要一个函数来打印一个特定图像(不是数据集)的标签。
以下是推理功能的代码,用于生成带谷歌启动的标签。 inceptionv4
函数是在张量流中实现的卷积神经网络。
def inference(images, num_classes, for_training=False, restore_logits=True,
scope=None):
"""Build Inception v3 model architecture.
See here for reference: http://arxiv.org/abs/1512.00567
Args:
images: Images returned from inputs() or distorted_inputs().
num_classes: number of classes
for_training: If set to `True`, build the inference model for training.
Kernels that operate differently for inference during training
e.g. dropout, are appropriately configured.
restore_logits: whether or not the logits layers should be restored.
Useful for fine-tuning a model with different num_classes.
scope: optional prefix string identifying the ImageNet tower.
Returns:
Logits. 2-D float Tensor.
Auxiliary Logits. 2-D float Tensor of side-head. Used for training only.
"""
# Parameters for BatchNorm.
batch_norm_params = {
# Decay for the moving averages.
'decay': BATCHNORM_MOVING_AVERAGE_DECAY,
# epsilon to prevent 0s in variance.
'epsilon': 0.001,
}
# Set weight_decay for weights in Conv and FC layers.
with slim.arg_scope([slim.ops.conv2d, slim.ops.fc], weight_decay=0.00004):
with slim.arg_scope([slim.ops.conv2d],
stddev=0.1,
activation=tf.nn.relu,
batch_norm_params=batch_norm_params):
logits, endpoints = inception_v4(
images,
dropout_keep_prob=0.8,
num_classes=num_classes,
is_training=for_training,
scope=scope)
# Add summaries for viewing model statistics on TensorBoard.
_activation_summaries(endpoints)
# Grab the logits associated with the side head. Employed during training.
auxiliary_logits = endpoints['AuxLogits']
return logits, auxiliary_logits
这是我尝试在将图像传递给推理函数之前处理它。
def process_image(self, image_path):
filename_queue = tf.train.string_input_producer(image_path)
reader = tf.WholeFileReader()
key, value = reader.read(filename_queue)
img = tf.image.decode_jpeg(value)
height = self.image_size
width = self.image_size
image_data = tf.cast(img, tf.float32)
image_data = tf.reshape(image_data, shape=[1, height, width, 3])
return image_data
我想简单地处理图像文件,以便将其传递给推理函数。并且该推断打印出标签。上面的代码没有工作和打印错误:
ValueError: Shape () must have rank at least 1
如果有人能够提供有关此问题的任何见解,我感谢您。
答案 0 :(得分:0)
初始只需要(299,299,3)个输入缩放在-1和1之间的图像。请参阅下面的代码。我只是使用这个更改图像并将它们放入TFRecord(然后排队)来运行我的东西。
from PIL import Image
import PIL
import numpy as np
def load_image( self, image_path ):
img = Image.open( image_path )
newImg = img.resize((299,299), PIL.Image.BILINEAR).convert("RGB")
data = np.array( newImg.getdata() )
return 2*( data.reshape( (newImg.size[0], newImg.size[1], 3) ).astype( np.float32 )/255 ) - 1