鉴于,
1*2^1 + 2*2^2 + 3*2^3 + 4*2^4 + ... d * 2^d
= sum(r * 2^r, r from 1 to d)
我们如何推断出以下解决方案?
= 2 (d-1) * 2^d + 2
谢谢
答案 0 :(得分:2)
d 上的induction:
基本案例
d = 1
sum(r * 2^r, r from 1 to 1) = 1 * 2^1 = 1 * 2 = 2
2 * (1 - 1) * 2^1 + 2 = 2 * 0 * 2 + 2 = 0 + 2 = 2
归纳案例
我们假设归纳假设对于 d 是正确的:
sum(r * 2^r, r from 1 to d + 1) =
sum(r * 2^r, r from 1 to d) + [(d + 1) * 2^(d + 1)] =
2 * (d-1) * 2^d + 2 + [(d + 1) * 2^(d + 1)] =
(d - 1) * 2^(d + 1) + 2 + d * 2^(d + 1) + 2^(d + 1) =
d * 2^(d + 1) - 2^(d + 1) + 2 + d * 2^(d + 1) + 2^(d + 1) =
d * 2^(d + 1) + 2 + d * 2^(d + 1) =
2 * d * 2^(d + 1) + 2 (result 1)
和现在评估d + 1
2 (d-1) * 2^d + 2 = (substituting d + 1 for d)
2 * (d + 1 - 1) * 2^(d + 1) + 2 =
2 * d * 2^(d + 1) + 2 (result 2)
从而
2 * d * 2^(d + 1) + 2 (result 1) = 2 * d * 2^(d + 1) + 2 (result 2)
QED
答案 1 :(得分:0)
我认为你可以通过归纳证明来证明这一点: