我正在研究RNA seq数据并试图按基因型绘制平均覆盖率图,与此处的内容类似
每个基因型的RNA seq覆盖率(来源:pickrell等,Nature,2010)
为了做这个图,我有来自100个人的bigwig文件,其中包含来自RNA-seq数据(在特定区域中)的覆盖信息,以及我在R中读取的GenomicRanges对象。
这给了我GRanges对象,例如在以下玩具示例中获得的对象:
gr1 = GRanges(seqname = 1,range = IRanges(start = c(1,5,10,15,30,55),end = c(4,9,14,29,39,60)))
GR1 $ COV = C(3,1,8,6,2,10)
gr2 = GRanges(seqname = 1,range = IRanges(start = c(3,20,24),end = c(7,23,26)))
GR2 $ COV = C(3,5,3)
开始=唯一的(排序(C(范围(GR1)@开始,范围(GR2)@启动)))
GR1
GRanges object with 6 ranges and 1 metadata column:
seqnames ranges strand | cov
<Rle> <IRanges> <Rle> | <numeric>
1 [ 1, 4] * | 3
1 [ 5, 9] * | 1
1 [10, 14] * | 8
1 [15, 29] * | 6
1 [30, 39] * | 2
1 [55, 60] * | 10
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
GR2
GRanges object with 3 ranges and 1 metadata column:
seqnames ranges strand | cov
<Rle> <IRanges> <Rle> | <numeric>
1 [ 3, 7] * | 3
1 [20, 23] * | 5
1 [24, 26] * | 3
-------
seqinfo: 1 sequence from an unspecified genome; no seqlengths
问题在于我每个人都有这些(gr1和gr2将是2个不同的个体),我想将它们组合起来创建一个基因组范围对象,这个对象可以让我在每个人的位置上得到总覆盖率,1和2 看起来如下:
GR3
GRanges object with 6 ranges and 1 metadata column:
seqnames ranges strand | cov
<Rle> <IRanges> <Rle> | <numeric>
1 [ 1, 2] * | 3
1 [ 3, 4] * | 6 (=3+3)
1 [ 5, 7] * | 4 (=1+3)
1 [ 8, 9] * | 1
1 [10, 14] * | 8
1 [15, 19] * | 6
1 [20, 23] * | 11 (=6+5)
1 [24, 26] * | 9 (=6+3)
1 [27, 29] * | 6
1 [30, 39] * | 2
1 [55, 60] * | 10
有谁知道一个简单的方法吗?还是我注定了?
感谢您的回答。
PS: 我的数据并没有搁浅,但如果你有数据搁浅,那就更好了。
PPS:理想情况下,我还希望能够进行乘法运算,或者应用具有两个参数x和y的任何函数,而不是简单地添加覆盖范围。
答案 0 :(得分:2)
已经差不多一年了,但这是我未来参考的答案。
每当我找不到直接执行此任务的函数时,我只需将GRanges
个对象扩展为单bp分辨率。这允许我对元数据列执行任何所需的操作,将它们视为简单的data.frame
列,因为IRanges
现在在两个Granges
对象之间匹配。
在这个问题的具体情况中,以下工作。
### Sort seqlevels
# (not necessary here, but in real world examples,
# with multiple sequences, you will want to do this)
gr1 <- sort(GenomeInfoDb::sortSeqlevels(gr1))
gr2 <- sort(GenomeInfoDb::sortSeqlevels(gr2))
### Add seqlengths
# (this corresponds to the actual sequence lengths;
# here we use the highest position between the two objects: 60)
seqlengths(gr1) <- 60
### Make 1-bp tiles covering the genome
# (using either one of gr1 and gr2 as a reference)
bins <- GenomicRanges::tileGenome(GenomeInfoDb::seqlengths(gr1),
tilewidth=1,
cut.last.tile.in.chrom=TRUE)
### Get coverage signal as Rle object
gr1_cov <- coverage(gr1, weight="cov")
gr2_cov <- coverage(gr2, weight="cov")
### Get average coverage in each bin
# (since the bins are 1-bp wide, this just keeps the original coverage value)
gr1_bins <- GenomicRanges::binnedAverage(bins, gr1_cov, "binned_cov")
gr2_bins <- GenomicRanges::binnedAverage(bins, gr2_cov, "binned_cov")
### Make final object:
# We can now sum the values in the metadata columns
# Addressing the PPS, you could do any other operation or apply a function
gr3 <- gr1_bins
gr3$binned_cov <- gr1_bins$binned_cov + gr2_bins$binned_cov
这会以单bp分辨率生成最终的GRanges
对象。
> gr3
GRanges object with 60 ranges and 1 metadata column:
seqnames ranges strand | binned_cov
<Rle> <IRanges> <Rle> | <numeric>
[1] 1 [1, 1] * | 3
[2] 1 [2, 2] * | 3
[3] 1 [3, 3] * | 6
[4] 1 [4, 4] * | 6
[5] 1 [5, 5] * | 4
... ... ... ... . ...
[56] 1 [56, 56] * | 10
[57] 1 [57, 57] * | 10
[58] 1 [58, 58] * | 10
[59] 1 [59, 59] * | 10
[60] 1 [60, 60] * | 10
-------
seqinfo: 1 sequence from an unspecified genome
要压缩它并在问题中得到确切的gr3
,我们可以执行以下操作。
### Compress back to variable-width IRanges (by cov)
gr3_Rle <- coverage(gr3, weight='binned_cov')
gr3 <- as(gr3_Rle, "GRanges")
### Drop 0-score rows
gr3 <- gr3[gr3$score > 0]
### Rename metadata column
names(mcols(gr3)) <- 'cov'
> gr3
GRanges object with 11 ranges and 1 metadata column:
seqnames ranges strand | cov
<Rle> <IRanges> <Rle> | <numeric>
[1] 1 [ 1, 2] * | 3
[2] 1 [ 3, 4] * | 6
[3] 1 [ 5, 7] * | 4
[4] 1 [ 8, 9] * | 1
[5] 1 [10, 14] * | 8
[6] 1 [15, 19] * | 6
[7] 1 [20, 23] * | 11
[8] 1 [24, 26] * | 9
[9] 1 [27, 29] * | 6
[10] 1 [30, 39] * | 2
[11] 1 [55, 60] * | 10
-------
seqinfo: 1 sequence from an unspecified genome