我正在努力在pymc3中实现隐藏马尔可夫链。我在实现隐藏状态方面已经走得很远了。下面,我展示了一个简单的2状态马尔可夫链:
import numpy as np
import pymc3 as pm
import theano.tensor as tt
# Markov chain sample with 2 states that was created
# to have prob 0->1 = 0.1 and prob 1->0 = 0.3
sample = np.array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0,
1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0],
dtype=np.uint8)
我现在正在定义一个描述状态的类。作为输入,我需要知道从状态0移动到状态1的概率P1,以及从1到0移动的P2。我还需要知道第一个状态为0的概率PA。
class HMMStates(pm.Discrete):
"""
Hidden Markov Model States
Parameters
----------
P1 : tensor
probability to remain in state 1
P2 : tensor
probability to move from state 2 to state 1
"""
def __init__(self, PA=None, P1=None, P2=None,
*args, **kwargs):
super(HMMStates, self).__init__(*args, **kwargs)
self.PA = PA
self.P1 = P1
self.P2 = P2
self.mean = 0.
self.mode = tt.cast(0,dtype='int64')
def logp(self, x):
PA = self.PA
P1 = self.P1
P2 = self.P2
# now we need to create an array with probabilities
# so that for x=A: PA=P1, PB=(1-P1)
# and for x=B: PA=P2, PB=(1-P2)
choice = tt.stack((P1,P2))
P = choice[x[:-1]]
x_i = x[1:]
ou_like = pm.Categorical.dist(P).logp(x_i)
return pm.Categorical.dist(PA).logp(x[0]) + tt.sum(ou_like)
我为在theano google小组学到的高级索引忍者技巧感到自豪。您也可以使用tt.switch实现相同的功能。我不太确定的是self.mode。我只是给它0以避免测试值错误。以下是如何在模型中使用该类来测试它是否有效。在这种情况下,状态不是隐藏的,而是观察到的。
with pm.Model() as model:
# 2 state model
# P1 is probablility to stay in state 1
# P2 is probability to move from state 2 to state 1
P1 = pm.Dirichlet('P1', a=np.ones(2))
P2 = pm.Dirichlet('P2', a=np.ones(2))
PA = pm.Deterministic('PA',P2/(P2+1-P1))
states = HMMStates('states',PA,P1,P2, observed=sample)
start = pm.find_MAP()
trace = pm.sample(5000, start=start)
输出很好地再现了数据。在下一个模型中,我将展示问题。在这里,我不直接观察状态,而是添加了一些高斯噪声的状态(因此隐藏状态)。如果你使用Metropolis步进器运行模型,那么它会因索引错误而崩溃,我追溯到与使用Metropolis stepper on Categorical Distributions相关的问题。不幸的是,唯一适用于我的类的Stepper是CategoricalGibbsMetropolis步进器,但它拒绝使用我的类,因为它不是明确的分类分发。
gauss_sample = sample*1.0 + 0.1*np.random.randn(len(sample))
from scipy import optimize
with pm.Model() as model2:
# 2 state model
# P1 is probablility to stay in state 1
# P2 is probability to move from state 2 to state 1
P1 = pm.Dirichlet('P1', a=np.ones(2))
P2 = pm.Dirichlet('P2', a=np.ones(2))
S = pm.InverseGamma('S',alpha=2.1, beta=1.1)
PA = pm.Deterministic('PA',P2/(P2+1-P1))
states = HMMStates('states',PA,P1,P2, shape=len(gauss_sample))
emission = pm.Normal('emission',
mu=tt.cast(states,dtype='float64'),
sd=S,
observed = gauss_sample)
start2 = pm.find_MAP(fmin=optimize.fmin_powell)
step1 = pm.Metropolis(vars=[P1, P2, S, PA, emission])
step2 = pm.ElemwiseCategorical(vars=[states], values=[0,1])
trace2 = pm.sample(10000, start=start, step=[step1,step2])
ElemwiseCategorical使其运行,但不为我的状态指定正确的值。状态全部为0或全部为1。
如何告诉ElemwiseCategorial分配状态为1和0的向量,或者我如何让CategorialGibbsMetropolis将我的分布识别为分类。这必须是自定义分发的常见问题。
答案 0 :(得分:1)
由于我没有听到任何人的问题,我自己回答了。我使用的技巧是由Chris Fonnesbeck在pymc3 github上提出的,我在那里打开了这个问题。他建议继承pm.Categorical。
class HMMStates(pm.Categorical):
"""
Hidden Markov Model States
Parameters
----------
P1 : tensor
probability to remain in state 1
P2 : tensor
probability to move from state 2 to state 1
"""
def __init__(self, PA=None, P1=None, P2=None,
*args, **kwargs):
super(pm.Categorical, self).__init__(*args, **kwargs)
self.PA = PA
self.P1 = P1
self.P2 = P2
self.k = 2 # two state model
self.mean = 0.
self.mode = tt.cast(0,dtype='int64')
def logp(self, x):
PA = self.PA
P1 = self.P1
P2 = self.P2
# now we need to create an array with probabilities
# so that for x=A: PA=P1, PB=(1-P1)
# and for x=B: PA=P2, PB=(1-P2)
PT = tt.stack((P1,P2))
P = PT[x[:-1]]
x_i = x[1:]
ou_like = pm.Categorical.dist(P, shape=(N_chain-1,2)).logp(x_i)
return pm.Categorical.dist(PA).logp(x[0]) + tt.sum(ou_like)
我的HMMStates无法真正调用pm.Categorical超级初始化,因此我调用的是pm.Categorical的超类,即pm.Discrete。这个技巧使它通过了BinaryGibbsMetropolis和CategoricalGibbsMetropolis的测试。
如果您对实现2状态和多状态HMM感兴趣,我将实现所有这些情况here。