如何推进Quantlib的一天

时间:2017-01-04 19:19:54

标签: python quantlib quantlib-swig

我的理解是,为了推进这一天,你会做这样的事情:

ql.Settings.instance().evaluation_date = calculation_date + 1

但是,当我执行以下代码时,我得到的选项值相同:

import QuantLib as ql     

# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate =  0.0163
option_type = ql.Option.Call

risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()

calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date

# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)

spot_handle = ql.QuoteHandle(
    ql.SimpleQuote(spot_price)
)

flat_ts = ql.YieldTermStructureHandle(
    ql.FlatForward(calculation_date, risk_free_rate, day_count)
)

dividend_yield = ql.YieldTermStructureHandle(
    ql.FlatForward(calculation_date, dividend_rate, day_count)
)

flat_vol_ts = ql.BlackVolTermStructureHandle(
    ql.BlackConstantVol(calculation_date, calendar, volatility, day_count)
)

bsm_process = ql.BlackScholesMertonProcess(spot_handle, 
                                           dividend_yield, 
                                           flat_ts, 
                                           flat_vol_ts)

european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price   

payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)

#Once you have the american option object you can value them using the binomial tree method:

binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()                                  

ql.Settings.instance().evaluation_date = calculation_date + 1

print "The theoretical European price is ", european_option.NPV() 
print "The theoretical American price is ", american_option.NPV()

[idf@node3 python]$ python european_option.py 
The theoretical European price is  6.74927181246
The theoretical American price is  6.85858045945
The theoretical European price is  6.74927181246
The theoretical American price is  6.85858045945
[idf@node3 python]$ 

修改

根据以下建议将代码更改为,但日期更改对计算没有影响。

[idf@node3 python]$ python advance_day.py 
The theoretical European price is  6.74927181246
The theoretical American price is  6.85858045945
The theoretical European price is  6.74927181246
The theoretical American price is  6.85858045945
[idf@node3 python]$ 

以下是每条建议的代码更改。

import QuantLib as ql     

# option data
maturity_date = ql.Date(15, 1, 2016)
spot_price = 127.62
strike_price = 130
volatility = 0.20 # the historical vols for a year
dividend_rate =  0.0163
option_type = ql.Option.Call

risk_free_rate = 0.001
day_count = ql.Actual365Fixed()
#calendar = ql.UnitedStates()
calendar = ql.TARGET()

calculation_date = ql.Date(8, 5, 2015)
ql.Settings.instance().evaluationDate = calculation_date

# construct the European Option
payoff = ql.PlainVanillaPayoff(option_type, strike_price)
exercise = ql.EuropeanExercise(maturity_date)
european_option = ql.VanillaOption(payoff, exercise)

spot_handle = ql.QuoteHandle(
    ql.SimpleQuote(spot_price)
)

flat_ts = ql.YieldTermStructureHandle(
    ql.FlatForward(0, calendar, risk_free_rate, day_count)
)

dividend_yield = ql.YieldTermStructureHandle(
    ql.FlatForward(0, calendar, dividend_rate, day_count)
)

flat_vol_ts = ql.BlackVolTermStructureHandle(
    ql.BlackConstantVol(0, calendar, volatility, day_count)
)

bsm_process = ql.BlackScholesMertonProcess(spot_handle, 
                                           dividend_yield, 
                                           flat_ts, 
                                           flat_vol_ts)

european_option.setPricingEngine(ql.AnalyticEuropeanEngine(bsm_process))
bs_price = european_option.NPV()
print "The theoretical European price is ", bs_price   

payoff = ql.PlainVanillaPayoff(option_type, strike_price)
settlement = calculation_date
am_exercise = ql.AmericanExercise(settlement, maturity_date)
american_option = ql.VanillaOption(payoff, am_exercise)

#Once you have the american option object you can value them using the binomial tree method:

binomial_engine = ql.BinomialVanillaEngine(bsm_process, "crr", 100)
american_option.setPricingEngine(binomial_engine)
print "The theoretical American price is ", american_option.NPV()                                  

ql.Settings.instance().evaluation_date = calculation_date + 1
# Also tried calendar.advance(calculation_date,1,ql.Days)

print "The theoretical European price is ", european_option.NPV() 
print "The theoretical American price is ", american_option.NPV()

1 个答案:

答案 0 :(得分:1)

计算日期不是全部。您正在设置曲线,以便修改其参考日期(也就是说,您正在调用带有日期的构造函数;有关详细信息,请参阅this post;有关详细信息,请参阅this video例子)。

如果您指定参考日期,那么该参考日期与计算日期无关;这是因为它们不一定相同(例如,您可能希望利率曲线基于现货日期而不是今天的日期)。因此,即使您更改计算日期,曲线返回的波动率和利率仍将相对于其参考日期,而参考日期并未移动。

要获得所需的效果,您可以创建曲线,使其随评估日期一起移动;例如,而不是

ql.FlatForward(calculation_date, risk_free_rate, day_count)

你可以使用

ql.FlatForward(0, calendar, risk_free_rate, day_count)

表示参考日期在计算日期"之后指定为" 0个工作日,或者换句话说,作为计算日期。波动率曲线具有类似的构造函数。