如何解决线性编程问题,使用JOptimizer java API提供备用优化解决方案?

时间:2017-01-02 18:17:49

标签: java linear-programming joptimizer

我要解决的问题是:

/** Maximize 4x+3Y
 * Subject to
 *  8x+6y <= 25
 *  3x+4y <= 15
 *  x,y >= 0
 */

理论上LP这个问题的优化有无限的解决方案。

我的谷歌硬盘提供的所有必需的库,依赖项: https://drive.google.com/file/d/0B84k1fZRHSMdak00TjZKNXBKSFU/view?usp=sharing

我的代码:

package testJOptimizer;

import com.joptimizer.functions.ConvexMultivariateRealFunction;
import com.joptimizer.functions.LinearMultivariateRealFunction;
import com.joptimizer.optimizers.JOptimizer;
import com.joptimizer.optimizers.OptimizationRequest;

/**
 *
 * @author K.P.L.Kanchana
 */
public class test_4_alternateOptimum {

    /**
     * @param args the command line arguments
     */
    public static void main(String[] args){
//        BasicConfigurator.configure();

        // Objective function (plane)
        LinearMultivariateRealFunction objectiveFunction = new LinearMultivariateRealFunction(new double[] {-4.0, -3.0}, 0); // maximize 4x+3y

        //inequalities (polyhedral feasible set G.X<H )
        ConvexMultivariateRealFunction[] inequalities = new ConvexMultivariateRealFunction[4];
        // 8x+6y <= 25
        inequalities[0] = new LinearMultivariateRealFunction(new double[]{8.0, 6.0}, -25); // 8x+6y-25<=0
        // 3x+4y <= 15
        inequalities[1] = new LinearMultivariateRealFunction(new double[]{1.0, 4.0}, -15); // 3x+4y-15<=0
        // x >= 0
        inequalities[2] = new LinearMultivariateRealFunction(new double[]{-1.0, 0.0}, 0);
        // y >= 0
        inequalities[3] = new LinearMultivariateRealFunction(new double[]{0.0, -1.0}, 0);

        //optimization problem
        OptimizationRequest or = new OptimizationRequest();
        or.setF0(objectiveFunction);
        or.setFi(inequalities);
        //or.setInitialPoint(new double[] {0.0, 0.0});//initial feasible point, not mandatory
        or.setToleranceFeas(1.E-9);
        or.setTolerance(1.E-9);

        //optimization
        JOptimizer opt = new JOptimizer();
        opt.setOptimizationRequest(or);
        try {
            int returnCode = opt.optimize();
        }
        catch (Exception ex) {
            ex.printStackTrace();
            return;
        }

        // get the solution
        double[] sol = opt.getOptimizationResponse().getSolution();

        // display the solution
        System.out.println("Length: " + sol.length);
        for (int i = 0; i < sol.length; i++) {
                System.out.println("answer " + (i+1) + ": " + (sol[i]));
        }
    }

}

1 个答案:

答案 0 :(得分:0)

我发现我的代码存在问题。说实话我得到了alberto trivellato的一些帮助。据我所知,他是开发JOptimizer的人。我非常感谢他浪费时间去寻找问题。 正如他所提到的那样,问题不在于多种解决方案,而在于我向求解者提出的高精度问题。最好的做法是不要求比你真正需要的更精确。还要记住,不等式总是以G.x的形式出现。 h,即严格小于(不小于htan或EQUAL),因为JOptimizer实现了内点法解算器。

更正后的代码:

package testJOptimizer;

import com.joptimizer.functions.ConvexMultivariateRealFunction;
import com.joptimizer.functions.LinearMultivariateRealFunction;
import com.joptimizer.optimizers.JOptimizer;
import com.joptimizer.optimizers.OptimizationRequest;

/**
 *
 * @author K.P.L.Kanchana
 */
public class test_4_alternateOptimum {

    /**
     * @param args the command line arguments
     */
    public static void main(String[] args){
//        BasicConfigurator.configure();

        // Objective function (plane)
        LinearMultivariateRealFunction objectiveFunction = new LinearMultivariateRealFunction(new double[] {-4.0, -3.0}, 0); // maximize 4x+3y

        //inequalities (polyhedral feasible set G.X<H )
        ConvexMultivariateRealFunction[] inequalities = new ConvexMultivariateRealFunction[4];
        // 8x+6y < 25(no equal sign)
        inequalities[0] = new LinearMultivariateRealFunction(new double[]{8.0, 6.0}, -25); // 8x+6y-25<0
        // 3x+4y < 15
        inequalities[1] = new LinearMultivariateRealFunction(new double[]{1.0, 4.0}, -15); // 3x+4y-15<0
        // x > 0
        inequalities[2] = new LinearMultivariateRealFunction(new double[]{-1.0, 0.0}, 0);
        // y > 0
        inequalities[3] = new LinearMultivariateRealFunction(new double[]{0.0, -1.0}, 0);

        //optimization problem
        OptimizationRequest or = new OptimizationRequest();
        or.setF0(objectiveFunction);
        or.setFi(inequalities);
        //or.setInitialPoint(new double[] {0.0, 0.0});//initial feasible point, not mandatory
        or.setToleranceFeas(JOptimizer.DEFAULT_FEASIBILITY_TOLERANCE / 10); // There was the issue
        or.setTolerance(JOptimizer.DEFAULT_TOLERANCE / 10);  // There was the issue

        //optimization
        JOptimizer opt = new JOptimizer();
        opt.setOptimizationRequest(or);
        try {
            int returnCode = opt.optimize();
        }
        catch (Exception ex) {
            ex.printStackTrace();
            return;
        }

        // get the solution
        double[] sol = opt.getOptimizationResponse().getSolution();

        // display the solution
        System.out.println("Length: " + sol.length);
        for (int i = 0; i < sol.length; i++) {
                System.out.println("answer " + (i+1) + ": " + (sol[i]));
        }
    }

}