假设我有以下循环,它使用ARMA模型通过模型重新拟合来计算滚动预测。
library(forecast)
set.seed(1)
prices=rnorm(1963)
USDlogreturns=diff(log(prices))
h <- 1
train <- window(USDlogreturns, end=1162, frequency=1)
test <- window(USDlogreturns, start=1163, frequency=1)
n <- length(test) - h + 1
fc1 <- ts(numeric(n), start=1163+1, freq=1)
fc2 <- ts(numeric(n), start=1163+1, freq=1)
fc3 <- ts(numeric(n), start=1163+1, freq=1)
fc4 <- ts(numeric(n), start=1163+1, freq=1)
fit1 <- Arima(train, order=c(0,0,0), include.mean=TRUE, method="ML")
fit2 <- Arima(train, order=c(0,0,1), include.mean=TRUE, method="ML")
fit3 <- Arima(train, order=c(1,0,0), include.mean=TRUE, method="ML")
fit4 <- Arima(train, order=c(1,0,1), include.mean=TRUE, method="ML")
for(i in 1:n){
x <- window(USDlogreturns, end=1162 + i, frequency=100)
refit1 <- Arima(x, model=fit1, include.mean=TRUE, method="ML")
refit2 <- Arima(x, model=fit2, include.mean=TRUE, method="ML")
refit3 <- Arima(x, model=fit3, include.mean=TRUE, method="ML")
refit4 <- Arima(x, model=fit4, include.mean=TRUE, method="ML")
fc1[i] <- forecast(refit1, h=h)$mean[h]
fc2[i] <- forecast(refit2, h=h)$mean[h]
fc3[i] <- forecast(refit3, h=h)$mean[h]
fc4[i] <- forecast(refit4, h=h)$mean[h]
}
当我在R中运行它时,我收到50条警告消息:
“在window.default中(USDlogreturns,结束= 1162 + i,频率= 100):'频率'未更改”
所以我的问题是我很难理解如何告诉R通过窗口函数每隔100天重新调整我的四个ARMA模型8次。
新手的任何提示?
答案 0 :(得分:0)
我设法自己解决了我的问题。顺便说一下,使用“pos”命令可以提供更加灵活和优雅的解决方案。
length_training <- 1162
start <- length_training + 1
end <- length(USDlogreturns)
forecast_length <- 1
for(pos in start:end) {
fit000 <- Arima(USDlogreturns[(pos-length_training):(pos-1)], order=c(0,0,0), include.mean=TRUE, method="ML")
fc000 <- forecast(fit000, h=forecast_length)$mean[forecast_length]
fit001 <- Arima(USDlogreturns[(pos-length_training):(pos-1)], order=c(0,0,1), include.mean=TRUE, method="ML")
fc001 <- forecast(fit001, h=forecast_length)$mean[forecast_length]
fit100 <- Arima(USDlogreturns[(pos-length_training):(pos-1)], order=c(1,0,0), include.mean=TRUE, method="ML")
fc100 <- forecast(fit100, h=forecast_length)$mean[forecast_length]
fit101 <- Arima(USDlogreturns[(pos-length_training):(pos-1)], order=c(1,0,1), include.mean=TRUE, method="ML")
fc101 <- forecast(fit101, h=forecast_length)$mean[forecast_length]
}