使用预测而不是预测函数 - 轮次误差(频率):数学函数的非数字参数

时间:2015-10-04 18:34:44

标签: r statistics

我创建了一个var autoregressive model

> library(vars)
> dput(datSel)
structure(list(oenb_dependent = c(1.0227039, -5.0683144, 0.6657713, 
3.3161374, -2.1586704, -0.7833623, -0.2203209, 2.416144, -1.7625406, 
-0.1565037, -7.9803936, 9.4594715, -4.8104584, 8.4827107, -6.1895262, 
1.4288595, 1.4896459, -0.4198522, -5.1583964, 5.2502294, 1.0567102, 
-1.0923342, -1.5852298, 0.6061936, -0.3752335, 2.5008664, -1.3999729, 
2.2802166, -2.1468756, -1.4890328, -0.79254376, 3.21804705, -0.94407886, 
-0.27802316, -0.20753079, -1.12610048, 2.0883735, -0.7424854, 
0.44203729, -1.48905938, 1.39644424, -3.8917377, 11.25665848, 
-9.22884035, 3.26856762, -0.00179541, -2.39664325, 4.00455574, 
-5.60891295, 4.6556348, -4.40536951, 6.64234497, -7.34787319, 
7.56303006, -8.23083674, 4.43247855, 1.31090412), carReg = c(0.73435946, 
0.24001161, 16.90532537, -14.60281976, 6.47603166, -8.35815849, 
3.55576685, 7.10705794, -4.6955223, 10.9623709, 5.5801857, -6.4499936, 
-9.46196502, 9.36289122, -8.52630424, 5.45070994, -4.5346405, 
-2.26716538, 2.56870398, 0.013737, 5.7750101, -27.1060826, 1.08977179, 
4.94934712, 17.55391859, -13.91160577, 10.38981128, -11.81349246, 
-0.0831467, 2.79748237, 1.84865463, -1.98736934, -6.24191695, 
13.33602659, -3.86527871, 0.78720993, 4.73360651, -4.1674034, 
9.37426802, -5.90660464, -0.4915792, -5.84811629, 9.67648643, 
-6.96872719, -7.6535767, 0.24847595, 0.18685263, -2.28766949, 
1.1544631, -3.87636933, -2.4731545, 4.33876671, 1.08836339, 5.64525271, 
1.90743854, -3.94709355, -0.84611324), cpi = c(1.16, -3.26, 0.22, 
-3.51, 0.84, -2.81, -0.34, -4.57, -0.12, -3.95, -1.37, -2.73, 
0.35, -5.38, -4.43, -3.08, 0.74, -3.03, -1.09, -2, 0.35, -1.52, 
1.28, 0.2, -0.25, -4.55, -2.49, -4.24, -0.31, -2.96, -2.24, -0.46, 
-0.06, -2.67, -1.27, -1.4, -0.7, -0.96, -2.18, -2.53, -0.52, 
-1.74, -2.18, -1.4, -0.34, -0.09, -1.65, -1.15, -0.17, -2.01, 
-1.38, -1.24, 0.09, -2.44, -1.92, -2.61, -0.34), primConstTot = c(-0.33334, 
-0.93333, -0.16667, -0.33333, -0.16667, -0.86666, -0.3, -0.4, 
-0.26667, -1.56667, -0.73333, 0.1, -0.23333, -0.26667, -1.5774, 
-0.19284, 0.38568, -2.42423, -0.93663, 0.08265, -0.63361, 0.0551, 
-0.49587, 2.39668, -1.70798, -3.36085, -2.56196, 0.16529, 0, 
-1.84572, -1.3774, -0.49586, -1.70798, -1.90081, -0.55096, -0.77134, 
-0.16529, -0.30303, -0.17066, -0.23853, -0.64401, -1.52657, -1.57426, 
-0.28623, -0.54861, -1.07336, -0.71558, 0.02385, -0.38164, -1.09721, 
0, 0.14311, -0.38164, -1.02566, -0.42934, -0.35779, -0.4532), 
    resProp.Dwell = c(0.8, -4, -3.2, 2.7, -1.6, -1, -2.4, -0.4, 
    -0.8, 1, -12.1, 0.2, -5.2, 3.7, -2.7, -1.7, 1.5, 0.7, -7.9, 
    0.3, 0.3, 1.4, -3.3, -1, -1.6, 1.5, 0.5, 1.5, -1, -2.2, -3.5, 
    0.5, 0.5, -0.9, -0.4, -3.4, 0.9, 0.1, -0.2, -2.8, -0.8, -6.2, 
    11.3, -4.6, 1, 1.1, -1.7, 4.1, -5, 2.3, -2.3, 4.6, -6.3, 
    6.3, -6.9, 0, 2.4), cbre.office.primeYield = c(0, 0, 0.15, 
    0.15, 0.2, 0.2, 0.2, 0.25, 0.25, 0.25, 0.25, 0.2, 0.15, 0.1, 
    0.05, 0.15, 0.3, 0.35, 0.4, 0.3, 0.2, 0, -0.15, -0.85, -1, 
    -0.85, -0.75, -0.1, 0, 0, 0, 0.05, 0.05, 0.05, 0.05, 0, 0, 
    0, 0.2, 0.2, 0.2, 0.2, 0, 0, 0, 0, 0.25, 0.25, 0.25, 0.25, 
    0, 0, 0, 0, 0, 0, 0), cbre.retail.capitalValue = c(-1882.35294, 
    230.76923, -230.76923, -226.41509, -670.78117, -436.13707, 
    -222.22223, 0, -205.91233, -202.16847, 0, -393.5065, -403.91909, 
    -186.30647, -539.81107, -748.11463, -764.70588, -311.47541, 
    -301.42782, -627.09677, -480, 720, 782.6087, 645.96273, 251.42857, 
    1386.66667, -533.33334, -533.33333, -533.33333, 0, 0, -1024.56141, 
    -192.10526, 0, -730, 0, 0, 0, 0, 0, -834.28571, 0, -1450.93168, 
    0, 0, 0, -700.78261, 0, 0, 0, 0, 0, 0, 0, -1452, 0, 0)), .Names = c("oenb_dependent", 
"carReg", "cpi", "primConstTot", "resProp.Dwell", "cbre.office.primeYield", 
"cbre.retail.capitalValue"), row.names = c(NA, -57L), class = "data.frame")
> #estimate lags
> VARselect(datSel, lag.max=7, type="const")$selection
AIC(n)  HQ(n)  SC(n) FPE(n) 
     7      7      7      6 
> var <- VAR(datSel, p=5, type="const")
> serial.test(var, lags.pt=10, type="PT.asymptotic")

    Portmanteau Test (asymptotic)

data:  Residuals of VAR object var
Chi-squared = 401.1802, df = 245, p-value = 1.15e-09
> fcst <- predict(var, n.ahead = 24) # this function works
> plot(fcst, xlab="Year") 
> forecast(var, 24)
Error in round(frequency) : non-numeric argument to mathematical function

但是,我想使用forecast函数而不是predict函数,因为我当前的图都使用了预测函数。

我得到的错误是:

Error in round(frequency) : non-numeric argument to mathematical function

有关如何正确使用forecast功能的任何建议吗?

感谢您的回复!

0 个答案:

没有答案