我决定使用CLRS算法简介文本,并选择了打印整齐的问题here。
我解决了这个问题并提出了一个必要的解决方案,这个解决方案在Python中很容易实现,但在Clojure中却不那么容易。
我完全不知道将计算矩阵函数从我的解决方案转换为惯用的Clojure。有什么建议?这是计算矩阵函数的伪代码:
// n is the dimension of the square matrix.
// c is the matrix.
function compute-matrix(c, n):
// Traverse through the left-lower triangular matrix and calculate values.
for i=2 to n:
for j=i to n:
// This is our minimum value sentinal.
// If we encounter a value lower than this, then we store the new
// lowest value.
optimal-cost = INF
// Index in previous column representing the row we want to point to.
// Whenever we update 't' with a new lowest value, we need to change
// 'row' to point to the row we're getting that value from.
row = 0
// This iterates through each entry in the previous column.
// Note: we have a lower triangular matrix, meaning data only
// exists in the left-lower half.
// We are on column 'i', but because we're in a left-lower triangular
// matrix, data doesn't start until row (i-1).
//
// Similarly, we go to (j-1) because we can't choose a configuration
// where the previous column ended on a word who's index is larger
// than the word index this column starts on - the case which occurs
// when we go for k=(i-1) to greater than (j-1)
for k=(i-1) to (j-1):
// When 'j' is equal to 'n', we are at the last cell and we
// don't care how much whitespace we have. Just take the total
// from the previous cell.
// Note: if 'j' < 'n', then compute normally.
if (j < n):
z = cost(k + 1, j) + c[i-1, k]
else:
z = c[i-1, k]
if z < optimal-cost:
row = k
optimal-cost = z
c[i,j] = optimal-cost
c[i,j].row = row
此外,我非常感谢我对Clojure其他内容的反馈,特别是关于它是如何惯用的。我是否设法在我迄今为止编写的Clojure代码的命令范式之外进行充分思考?这是:
(ns print-neatly)
;-----------------------------------------------------------------------------
; High-order function which returns a function that computes the cost
; for i and j where i is the starting word index and j is the ending word
; index for the word list "word-list."
;
(defn make-cost [word-list max-length]
(fn [i j]
(let [total (reduce + (map #(count %1) (subvec word-list i j)))
result (- max-length (+ (- j i) total))]
(if (< result 0)
nil
(* result result result)))))
;-----------------------------------------------------------------------------
; initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
(let [; Prepend nil to our collection.
append-empty
(fn [v]
(cons nil v))
; Like append-empty; append cost-func for first column.
append-cost
(fn [v, index]
(cons (cost-func 0 index) v))
; Define an internal helper which calls append-empty N times to create
; a new vector consisting of N nil values.
; ie., [nil[0] nil[1] nil[2] ... nil[N]]
construct-empty-vec
(fn [n]
(loop [cnt n coll ()]
(if (neg? cnt)
(vec coll)
(recur (dec cnt) (append-empty coll)))))
; Construct the base level where each entry is the basic cost function
; calculated for the base level. (ie., starting and ending at the
; same word)
construct-base
(fn [n]
(loop [cnt n coll ()]
(if (neg? cnt)
(vec coll)
(recur (dec cnt) (append-cost coll cnt)))))]
; The main matrix-construct logic, which just creates a new Nx1 vector
; via construct-empty-vec, then prepends that to coll.
; We end up with a vector of N entries where each entry is a Nx1 vector.
(loop [cnt n coll ()]
(cond
(zero? cnt) (vec coll)
(= cnt 1) (recur (dec cnt) (cons (construct-base n) coll))
:else (recur (dec cnt) (cons (construct-empty-vec n) coll))))))
;-----------------------------------------------------------------------------
; Return the value at a given index in a matrix.
;
(defn matrix-lookup [matrix row col]
(nth (nth matrix row) col))
;-----------------------------------------------------------------------------
; Return a new matrix M with M[row,col] = value
; but otherwise M[i,j] = matrix[i,j]
;
(defn matrix-set [matrix row col value]
(let [my-row (nth matrix row)
my-cel (assoc my-row col value)]
(assoc matrix row my-cel)))
;-----------------------------------------------------------------------------
; Print the matrix out in a nicely formatted fashion.
;
(defn matrix-print [matrix]
(doseq [j (range (count matrix))]
(doseq [i (range (count matrix))]
(let [el (nth (nth matrix i) j)]
(print (format "%1$8.8s" el)))) ; 1st item max 8 and min 8 chars
(println)))
;-----------------------------------------------------------------------------
; Main
;-----------------------------------------------------------------------------
;-----------------------------------------------------------------------------
; Grab all arguments from the command line.
;
(let [line-length (Integer. (first *command-line-args*))
words (vec (rest *command-line-args*))
cost (make-cost words line-length)
matrix (matrix-construct (count words) cost)]
(matrix-print matrix))
编辑:我已经根据给出的反馈更新了我的矩阵构造函数,所以现在它实际上比我的Python实现短了一行。
;-----------------------------------------------------------------------------
; Initialization function for nxn matrix
;
(defn matrix-construct [n cost-func]
(letfn [; Build an n-length vector of nil
(construct-empty-vec [n]
(vec (repeat n nil)))
; Short-cut so we can use 'map' to apply the cost-func to each
; element in a range.
(my-cost [j]
(cost-func 0 j))
; Construct the base level where each entry is the basic cost function
; calculated for the base level. (ie., starting and ending at the
; same word)
(construct-base-vec [n]
(vec (map my-cost (range n))))]
; The main matrix-construct logic, which just creates a new Nx1 vector
; via construct-empty-vec, then prepends that to coll.
; We end up with a vector of N entries where each entry is a Nx1 vector.
(let [m (repeat (- n 1) (construct-empty-vec n))]
(vec (cons (construct-base-vec n) m)))))
答案 0 :(得分:3)
答案 1 :(得分:2)
您可以简化矩阵查找和矩阵集功能。您可以使用assoc-in
和get-in
来操纵嵌套的关联结构。
(defn matrix-lookup [matrix row col]
(get-in matrix [row col]))
(defn matrix-set [matrix row col value]
(assoc-in matrix [row col] value))
Alex Miller提到使用原始数组。如果您最终需要朝这个方向发展,可以先查看int-array
,aset-int
和aget
。查看clojure.core文档以了解更多信息。
答案 2 :(得分:2)
我爬上了墙,能够以类似Clojure的方式思考,将核心计算矩阵算法转换为可行的程序。
它只比我的Python实现长一行,尽管它看起来更密集。当然,像'map'和'reduce'这样的概念是需要你加上思考上限的高级函数。
我相信这个实现也修复了我的Python中的一个错误。 :)
;-----------------------------------------------------------------------------
; Compute all table entries so we can compute the optimal cost path and
; reconstruct an optimal solution.
;
(defn compute-matrix [m cost]
(letfn [; Return a function that computes 'cost(k+1,j) + c[i-1,k]'
; OR just 'c[i-1,k]' if we're on the last row.
(make-min-func [matrix i j]
(if (< j (- (count matrix) 1))
(fn [k]
(+ (cost (+ k 1) j) (get-in matrix [(- i 1) k])))
(fn [k]
(get-in matrix [(- i 1) k]))))
; Find the minimum cost for the new cost: 'cost(k+1,j)'
; added to the previous entry's cost: 'c[i-1,k]'
(min-cost [matrix i j]
(let [this-cost (make-min-func matrix i j)
rang (range (- i 1) (- j 1))
cnt (if (= rang ()) (list (- i 1)) rang)]
(apply min (map this-cost cnt))))
; Takes a matrix and indices, returns an updated matrix.
(combine [matrix indices]
(let [i (first indices)
j (nth indices 1)
opt (min-cost matrix i j)]
(assoc-in matrix [i j] opt)))]
(reduce combine m
(for [i (range 1 (count m)) j (range i (count m))] [i j]))))
感谢Alex和Jake的评论。他们都非常有帮助,并帮助我走向惯用的Clojure。
答案 3 :(得分:1)
我对Clojure中动态程序的一般处理方法不是直接混淆值矩阵的构造,而是与固定点组合子一起使用记忆。这是我计算编辑距离的例子:
(defn edit-distance-fp
"Computes the edit distance between two collections"
[fp coll1 coll2]
(cond
(and (empty? coll1) (empty? coll2)) 0
(empty? coll2) (count coll1)
(empty? coll1) (count coll2)
:else (let [x1 (first coll1)
xs (rest coll1)
y1 (first coll2)
ys (rest coll2)]
(min
(+ (fp fp xs ys) (if (= x1 y1) 0 1))
(inc (fp fp coll1 ys))
(inc (fp fp xs coll2))))))
这里与天真递归解决方案的唯一区别就是用fp调用替换递归调用。
然后我用:
创建一个记忆固定点(defn memoize-recursive [f] (let [g (memoize f)] (partial g g)))
(defn mk-edit-distance [] (memoize-recursive edit-distance-fp))
然后用:
来调用它> (time ((mk-edit-distance)
"the quick brown fox jumped over the tawdry moon"
"quickly brown foxes moonjumped the tawdriness"))
"Elapsed time: 45.758 msecs"
23
我发现memoization比变异表更容易包裹我的大脑。