这段代码用于实现Dijkstra的未加权图算法。使用加权图表我应该更改什么?我的图的边是双值,有没有机会在shortestPath方法中使用泛型类型?
/**
* Determine the shortest path to all vertices from a vertex using Dijkstra's algorithm
* To be called by public short method
*
* @param graph Graph object
* @param sourceIdx Source vertex
* @param knownVertices previously discovered vertices
* @param verticesIndex index of vertices in the minimum path
* @param minDist minimum distances in the path
*
*/
private static <V> void shortestPath(AdjacencyMatrixGraph<V,Double> graph, int sourceIdx, boolean[] knownVertices, int[] verticesIndex, double [] minDist) {
V vertexOrig = graph.vertices.get(sourceIdx);
Queue<V> qaux = new LinkedList<V>();
for(int i = 0; i < graph.numVertices; i++) {
minDist[i] = 0;
verticesIndex[i] = -1;
}
qaux.add(vertexOrig);
while(!qaux.isEmpty()) {
V vertex = qaux.remove();
for (V vertexAdj: graph.directConnections(vertex)) {
if(minDist[graph.toIndex(vertexAdj)] == 0) {
minDist[graph.toIndex(vertexAdj)] = minDist[graph.toIndex(vertex)]
+ graph.getEdge(vertex, vertexAdj);
verticesIndex[graph.toIndex(vertexAdj)] = graph.toIndex(vertex);
qaux.add(vertexAdj);
}
}
}
}
/**
* Determine the shortest path between two vertices using Dijkstra's algorithm
*
* @param graph Graph object
* @param source Source vertex
* @param dest Destination vertices
* @param path Returns the vertices in the path (empty if no path)
* @return minimum distance, -1 if vertices not in graph or no path
*
*/
public static <V> double shortestPath(AdjacencyMatrixGraph<V, Double> graph, V source, V dest, LinkedList<V> path){
path.clear();
if(!graph.checkVertex(source) || !graph.checkVertex(dest)) return -1;
else if(source.equals(dest)) {
path.add(dest);
return 0;
}
double minDist[] = new double[graph.numVertices];
int verticesIndex[] = new int[graph.numVertices];
shortestPath(graph, graph.toIndex(source), new boolean[graph.numVertices]
, verticesIndex, minDist);
if(verticesIndex[graph.toIndex(source)] == -1 || verticesIndex[graph.toIndex(dest)] == -1) return -1;
recreatePath(graph, graph.toIndex(source), graph.toIndex(dest), verticesIndex, path);
Collections.reverse(path);
System.out.println(path);
System.out.println(minDist[graph.toIndex(dest)]);
return minDist[graph.toIndex(dest)];
}
/**
* Recreates the minimum path between two vertex, from the result of Dikstra's algorithm
*
* @param graph Graph object
* @param sourceIdx Source vertex
* @param destIdx Destination vertices
* @param verticesIndex index of vertices in the minimum path
* @param Queue Vertices in the path (empty if no path)
*/
private static <V> void recreatePath(AdjacencyMatrixGraph<V, Double> graph, int sourceIdx, int destIdx, int[] verticesIndex, LinkedList<V> path){
path.add(graph.vertices.get(destIdx));
if (sourceIdx != destIdx){
destIdx = verticesIndex[destIdx];
recreatePath(graph, sourceIdx, destIdx, verticesIndex, path);
}
}
答案 0 :(得分:1)
Dijkstra算法使用加权图来计算图中从顶点到所有其他顶点的最短路径,前提是图中没有负边长。所以没有必要改变Dijkstra的实现,使其适用于加权图。如果它不适用于加权图,则问题在于Dijkstra的实现。
如果图表未加权,最好使用以线性时间运行的广度优先搜索来计算节点之间的距离。
Dijkstra算法是一种贪婪算法,它通过跟踪必须按其成本排序的顶点来工作。即将扩展的下一个顶点是具有下一个最小成本的顶点。
这是我们不需要对BFS做的事情,因为所有边权重都是相同的。 Why use Dijkstra's Algorithm if Breadth First Search (BFS) can do the same thing faster?显示了两者之间的差异
通过您的实现,我发现您正在使用Queue
来跟踪尚待探索的顶点。这不能确保展开的下一个顶点具有最低成本,因此您的算法将失败。
因此,每当您从Queue
中选择一个顶点进行展开时,它应该是具有最低成本的顶点。这可以通过每次迭代Queue
并以最低成本获取椎体来实现,尽管这可能会将其减少到O(n^2)
算法或使用堆数据结构来确保下一个拾取的顶点是永远是体重最轻的人。
答案 1 :(得分:1)
Queue<V> qaux = new LinkedList<V>();
队列应该是最小优先级队列,这意味着当你删除操作时:
V vertex = qaux.remove();
此顶点与源的对应距离是此队列中的最小值。您可以按堆实现最小优先级队列的数据结构。
答案 2 :(得分:0)
Thank you for your answers. I already have an implementation working.
private static <V> void shortestPath(AdjacencyMatrixGraph<V,Double> graph, int sourceIdx, boolean[] knownVertices, int[] verticesIndex, double [] minDist) {
V vertexOrig = graph.vertices.get(sourceIdx);
for(int i = 0; i < graph.numVertices; i++) {
minDist[i] = Double.MAX_VALUE;
verticesIndex[i] = -1;
knownVertices[i] = false;
}
verticesIndex[sourceIdx] = 0;
minDist[sourceIdx] = 0;
while(sourceIdx != -1) {
knownVertices[sourceIdx] = true;
for (V vertexAdj: graph.directConnections(vertexOrig)) {
int adjIdx = graph.toIndex(vertexAdj);
if(!knownVertices[adjIdx]
&& (minDist[adjIdx] > (minDist[sourceIdx] + graph.getEdge(vertexOrig, vertexAdj)))) {
minDist[adjIdx] = minDist[sourceIdx] + graph.getEdge(vertexOrig, vertexAdj);
verticesIndex[adjIdx] = sourceIdx;
}
}
double min = Double.MAX_VALUE;
sourceIdx = -1;
for(int i = 0; i < minDist.length; i++) {
if(minDist[i] < min && !knownVertices[i]) {
min = minDist[i];
sourceIdx = i;
vertexOrig = graph.vertices.get(sourceIdx);
}
}
}
}
public static <V> double shortestPath(AdjacencyMatrixGraph<V, Double> graph, V source, V dest, LinkedList<V> path){
path.clear();
if(!graph.checkVertex(source) || !graph.checkVertex(dest)) return -1;
else if(source.equals(dest)) {
path.add(dest);
return 0;
}
double minDist[] = new double[graph.numVertices];
int verticesIndex[] = new int[graph.numVertices];
int sourceIdx = graph.toIndex(source);
shortestPath(graph, graph.toIndex(source), new boolean[graph.numVertices]
, verticesIndex, minDist);
if(verticesIndex[sourceIdx] == -1) return -1;
recreatePath(graph, graph.toIndex(source), graph.toIndex(dest), verticesIndex, path);
Collections.reverse(path);
return minDist[graph.toIndex(dest)];
}