图像作为keras的输入和输出

时间:2016-11-18 04:02:18

标签: python-2.7 deep-learning theano keras

我正在尝试制作this image的模型。以下是相关代码:

Action: Set
Set: user-agent
Value: $(request.headers.user-agent)

我在目录中有一堆彩色图像。输入图像应该是图像堆叠三次(224x224x3)的灰度,base_model = VGG16(weights='imagenet') conv4_3, conv3_3, conv2_2, conv1_2 = base_model.get_layer('block4_conv3').output, base_model.get_layer('block3_conv3').output, base_model.get_layer('block2_conv2').output, base_model.get_layer('block1_conv2').output # Use the output of the layers of VGG16 on x in the model conv1 = Convolution2D(256, 1, 1, border_mode='same')(BatchNormalization()(conv4_3)) conv1_scaled = resize(conv1, 56) . . . conv5 = Convolution2D(3, 3, 3, border_mode='same')(merge([ip_img, conv4], mode='sum')) op = Convolution2D(2, 3, 3, border_mode='same')(conv5) for layer in base_model.layers: layer.trainable = False model = Model(input=base_model.input, output=op) model.compile(optimizer='sgd', loss=custom_loss_fn) 应该是图像的UV平面(224x224x2),我可以将其添加到灰度(224x224x1)以获取YUV图像。自定义损失函数适用于原始图像的UV和预测的UV。

我该如何训练?

1 个答案:

答案 0 :(得分:0)

你能打电话给model.fit(data, labels)吗? (https://keras.io/models/model/#fit