一位朋友需要一种算法让他循环遍历NxM矩阵的元素(N和M是奇数)。我想出了一个解决方案,但我想知道我的同事们是否能提出更好的解决方案。
我发布我的解决方案作为这个问题的答案。
示例输出:
对于3x3矩阵,输出应为:
(0,0) (1,0) (1,1) (0,1) (-1,1) (-1,0) (-1,-1) (0,-1) (1,-1)
此外,该算法应支持非平方矩阵,例如对于5x3矩阵,输出应为:
(0,0) (1,0) (1,1) (0,1) (-1,1) (-1,0) (-1,-1) (0,-1) (1,-1) (2,-1) (2,0) (2,1) (-2,1) (-2,0) (-2,-1)
答案 0 :(得分:56)
这是我的解决方案(在Python中):
def spiral(X, Y):
x = y = 0
dx = 0
dy = -1
for i in range(max(X, Y)**2):
if (-X/2 < x <= X/2) and (-Y/2 < y <= Y/2):
print (x, y)
# DO STUFF...
if x == y or (x < 0 and x == -y) or (x > 0 and x == 1-y):
dx, dy = -dy, dx
x, y = x+dx, y+dy
答案 1 :(得分:28)
C ++有人吗?从python快速翻译,发布完整性
void Spiral( int X, int Y){
int x,y,dx,dy;
x = y = dx =0;
dy = -1;
int t = std::max(X,Y);
int maxI = t*t;
for(int i =0; i < maxI; i++){
if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)){
// DO STUFF...
}
if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))){
t = dx;
dx = -dy;
dy = t;
}
x += dx;
y += dy;
}
}
答案 2 :(得分:18)
let x = 0
let y = 0
let d = 1
let m = 1
while true
while 2 * x * d < m
print(x, y)
x = x + d
while 2 * y * d < m
print(x, y)
y = y + d
d = -1 * d
m = m + 1
已经有很多针对这个问题提出的解决方案用各种编程语言编写,但它们似乎都源于同样错综复杂的方法。我将考虑计算螺旋的更普遍的问题,可以用归纳法简洁地表达。
基本情况:从(0,0)开始,向前移动1平方,向左转,向前移动1平方,向左转。 感应步骤:向前移动n + 1个方格,向左转,向前移动n + 1个方格,向左转。
表达这个问题的数学优雅强烈建议应该有一个简单的算法来计算解决方案。牢记抽象,我选择不用特定的编程语言实现算法,而是伪代码。
首先,我将考虑使用4对while循环计算螺旋的2次迭代的算法。每对的结构相似,但其本身却截然不同。这可能看起来很疯狂(有些循环只执行一次)但是我会逐步进行转换,直到我们到达4对相同的循环,因此可以用放在另一个循环内的一对循环替换。 这将为我们提供一种在不使用任何条件的情况下计算n次迭代的通用解决方案。
let x = 0
let y = 0
//RIGHT, UP
while x < 1
print(x, y)
x = x + 1
while y < 1
print(x, y)
y = y + 1
//LEFT, LEFT, DOWN, DOWN
while x > -1
print(x, y)
x = x - 1
while y > -1
print(x, y)
y = y - 1
//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x < 2
print(x, y)
x = x + 1
while y < 2
print(x, y)
y = y + 1
//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x > -2
print(x, y)
x = x - 1
while y > -2
print(x, y)
y = y - 1
我们要做的第一个转换是为方向引入一个新变量d,它包含值+1或-1。方向在每对循环之后切换。由于我们知道d在所有点上的值,我们可以将每个不等式的每一边乘以它,相应地调整不等式的方向并简化d乘以常数到另一个常数的任何乘法。这给我们留下了以下内容。
let x = 0
let y = 0
let d = 1
//RIGHT, UP
while x * d < 1
print(x, y)
x = x + d
while y * d < 1
print(x, y)
y = y + d
d = -1 * d
//LEFT, LEFT, DOWN, DOWN
while x * d < 1
print(x, y)
x = x + d
while y * d < 1
print(x, y)
y = y + d
d = -1 * d
//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 2
print(x, y)
x = x + d
while y * d < 2
print(x, y)
y = y + d
d = -1 * d
//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
print(x, y)
x = x + d
while y * d < 2
print(x, y)
y = y + d
现在我们注意到x * d和RHS都是整数,因此我们可以从RHS中减去0和1之间的任何实数值,而不会影响不等式的结果。我们选择从每对其他while循环的不等式中减去0.5,以便建立更多的模式。
let x = 0
let y = 0
let d = 1
//RIGHT, UP
while x * d < 0.5
print(x, y)
x = x + d
while y * d < 0.5
print(x, y)
y = y + d
d = -1 * d
//LEFT, LEFT, DOWN, DOWN
while x * d < 1
print(x, y)
x = x + d
while y * d < 1
print(x, y)
y = y + d
d = -1 * d
//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < 1.5
print(x, y)
x = x + d
while y * d < 1.5
print(x, y)
y = y + d
d = -1 * d
//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < 2
print(x, y)
x = x + d
while y * d < 2
print(x, y)
y = y + d
我们现在可以为每对while循环中的步骤数引入另一个变量m。
let x = 0
let y = 0
let d = 1
let m = 0.5
//RIGHT, UP
while x * d < m
print(x, y)
x = x + d
while y * d < m
print(x, y)
y = y + d
d = -1 * d
m = m + 0.5
//LEFT, LEFT, DOWN, DOWN
while x * d < m
print(x, y)
x = x + d
while y * d < m
print(x, y)
y = y + d
d = -1 * d
m = m + 0.5
//RIGHT, RIGHT, RIGHT, UP, UP, UP
while x * d < m
print(x, y)
x = x + d
while y * d < m
print(x, y)
y = y + d
d = -1 * d
m = m + 0.5
//LEFT, LEFT, LEFT, LEFT, DOWN, DOWN, DOWN, DOWN
while x * d < m
print(x, y)
x = x + d
while y * d < m
print(x, y)
y = y + d
最后,我们看到每对while循环的结构是相同的,并且可以简化为放置在另一个循环内部的单个循环。另外,为避免使用实数值,我将m的初始值相乘;值m增加;并且每个不等式的两边都是2。
这导致了本答案开头所示的解决方案。
答案 3 :(得分:15)
我喜欢python的发电机。
def spiral(N, M):
x,y = 0,0
dx, dy = 0, -1
for dumb in xrange(N*M):
if abs(x) == abs(y) and [dx,dy] != [1,0] or x>0 and y == 1-x:
dx, dy = -dy, dx # corner, change direction
if abs(x)>N/2 or abs(y)>M/2: # non-square
dx, dy = -dy, dx # change direction
x, y = -y+dx, x+dy # jump
yield x, y
x, y = x+dx, y+dy
测试:
print 'Spiral 3x3:'
for a,b in spiral(3,3):
print (a,b),
print '\n\nSpiral 5x3:'
for a,b in spiral(5,3):
print (a,b),
你得到:
Spiral 3x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1)
Spiral 5x3:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)
答案 4 :(得分:14)
这是找到平方螺旋位置的O(1)解决方案:Fiddle
function spiral(n) {
// given n an index in the squared spiral
// p the sum of point in inner square
// a the position on the current square
// n = p + a
var r = Math.floor((Math.sqrt(n + 1) - 1) / 2) + 1;
// compute radius : inverse arithmetic sum of 8+16+24+...=
var p = (8 * r * (r - 1)) / 2;
// compute total point on radius -1 : arithmetic sum of 8+16+24+...
var en = r * 2;
// points by face
var a = (1 + n - p) % (r * 8);
// compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
// so square can connect
var pos = [0, 0, r];
switch (Math.floor(a / (r * 2))) {
// find the face : 0 top, 1 right, 2, bottom, 3 left
case 0:
{
pos[0] = a - r;
pos[1] = -r;
}
break;
case 1:
{
pos[0] = r;
pos[1] = (a % en) - r;
}
break;
case 2:
{
pos[0] = r - (a % en);
pos[1] = r;
}
break;
case 3:
{
pos[0] = -r;
pos[1] = r - (a % en);
}
break;
}
console.log("n : ", n, " r : ", r, " p : ", p, " a : ", a, " --> ", pos);
return pos;
}
答案 5 :(得分:8)
Java螺旋式“Code golf”尝试,基于C ++变体。
public static void Spiral(int X, int Y) {
int x=0, y=0, dx = 0, dy = -1;
int t = Math.max(X,Y);
int maxI = t*t;
for (int i=0; i < maxI; i++){
if ((-X/2 <= x) && (x <= X/2) && (-Y/2 <= y) && (y <= Y/2)) {
System.out.println(x+","+y);
//DO STUFF
}
if( (x == y) || ((x < 0) && (x == -y)) || ((x > 0) && (x == 1-y))) {
t=dx; dx=-dy; dy=t;
}
x+=dx; y+=dy;
}
}
答案 6 :(得分:7)
这是一个C ++解决方案,它显示您可以直接轻松地计算下一个(x,y)坐标 - 无需跟踪当前方向,半径或其他任何内容:
void spiral(const int M, const int N)
{
// Generate an Ulam spiral centered at (0, 0).
int x = 0;
int y = 0;
int end = max(N, M) * max(N, M);
for(int i = 0; i < end; ++i)
{
// Translate coordinates and mask them out.
int xp = x + N / 2;
int yp = y + M / 2;
if(xp >= 0 && xp < N && yp >= 0 && yp < M)
cout << xp << '\t' << yp << '\n';
// No need to track (dx, dy) as the other examples do:
if(abs(x) <= abs(y) && (x != y || x >= 0))
x += ((y >= 0) ? 1 : -1);
else
y += ((x >= 0) ? -1 : 1);
}
}
如果您要做的只是生成螺旋中的前N个点(没有原始问题的屏蔽到N x M区域的约束),则代码变得非常简单:
void spiral(const int N)
{
int x = 0;
int y = 0;
for(int i = 0; i < N; ++i)
{
cout << x << '\t' << y << '\n';
if(abs(x) <= abs(y) && (x != y || x >= 0))
x += ((y >= 0) ? 1 : -1);
else
y += ((x >= 0) ? -1 : 1);
}
}
诀窍在于,您可以比较x和y来确定您所在的方块的哪一侧,并告诉您要移入的方向。
答案 7 :(得分:5)
TDD,Java。
SpiralTest.java:
import java.awt.Point;
import java.util.List;
import junit.framework.TestCase;
public class SpiralTest extends TestCase {
public void test3x3() throws Exception {
assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1)", strung(new Spiral(3, 3).spiral()));
}
public void test5x3() throws Exception {
assertEquals("(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)",
strung(new Spiral(5, 3).spiral()));
}
private String strung(List<Point> points) {
StringBuffer sb = new StringBuffer();
for (Point point : points)
sb.append(strung(point));
return sb.toString().trim();
}
private String strung(Point point) {
return String.format("(%s, %s) ", point.x, point.y);
}
}
Spiral.java:
import java.awt.Point;
import java.util.ArrayList;
import java.util.List;
public class Spiral {
private enum Direction {
E(1, 0) {Direction next() {return N;}},
N(0, 1) {Direction next() {return W;}},
W(-1, 0) {Direction next() {return S;}},
S(0, -1) {Direction next() {return E;}},;
private int dx;
private int dy;
Point advance(Point point) {
return new Point(point.x + dx, point.y + dy);
}
abstract Direction next();
Direction(int dx, int dy) {
this.dx = dx;
this.dy = dy;
}
};
private final static Point ORIGIN = new Point(0, 0);
private final int width;
private final int height;
private Point point;
private Direction direction = Direction.E;
private List<Point> list = new ArrayList<Point>();
public Spiral(int width, int height) {
this.width = width;
this.height = height;
}
public List<Point> spiral() {
point = ORIGIN;
int steps = 1;
while (list.size() < width * height) {
advance(steps);
advance(steps);
steps++;
}
return list;
}
private void advance(int n) {
for (int i = 0; i < n; ++i) {
if (inBounds(point))
list.add(point);
point = direction.advance(point);
}
direction = direction.next();
}
private boolean inBounds(Point p) {
return between(-width / 2, width / 2, p.x) && between(-height / 2, height / 2, p.y);
}
private static boolean between(int low, int high, int n) {
return low <= n && n <= high;
}
}
答案 8 :(得分:4)
这是我的解决方案(在Ruby中)
def spiral(xDim, yDim)
sx = xDim / 2
sy = yDim / 2
cx = cy = 0
direction = distance = 1
yield(cx,cy)
while(cx.abs <= sx || cy.abs <= sy)
distance.times { cx += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); }
distance.times { cy += direction; yield(cx,cy) if(cx.abs <= sx && cy.abs <= sy); }
distance += 1
direction *= -1
end
end
spiral(5,3) { |x,y|
print "(#{x},#{y}),"
}
答案 9 :(得分:3)
哈斯克尔,接受你的选择:
spiral x y = (0, 0) : concatMap ring [1 .. max x' y'] where
ring n | n > x' = left x' n ++ right x' (-n)
ring n | n > y' = up n y' ++ down (-n) y'
ring n = up n n ++ left n n ++ down n n ++ right n n
up x y = [(x, n) | n <- [1-y .. y]]; down = (.) reverse . up
right x y = [(n, y) | n <- [1-x .. x]]; left = (.) reverse . right
(x', y') = (x `div` 2, y `div` 2)
spiral x y = filter (\(x',y') -> 2*abs x' <= x && 2*abs y' <= y) .
scanl (\(a,b) (c,d) -> (a+c,b+d)) (0,0) $
concat [ (:) (1,0) . tail
$ concatMap (replicate n) [(0,1),(-1,0),(0,-1),(1,0)]
| n <- [2,4..max x y] ]
答案 10 :(得分:1)
这是一个略有不同的版本 - 尝试在LUA中使用recursion
和iterators
。在每一步中,程序在矩阵内进一步下降并循环。我还为螺旋clockwise
或anticlockwise
添加了一个额外的标记。输出从右下角开始,以递归方式向中心循环。
local row, col, clockwise
local SpiralGen
SpiralGen = function(loop) -- Generator of elements in one loop
local startpos = { x = col - loop, y = row - loop }
local IteratePosImpl = function() -- This function calculates returns the cur, next position in a loop. If called without check, it loops infinitely
local nextpos = {x = startpos.x, y = startpos.y}
local step = clockwise and {x = 0, y = -1} or { x = -1, y = 0 }
return function()
curpos = {x = nextpos.x, y = nextpos.y}
nextpos.x = nextpos.x + step.x
nextpos.y = nextpos.y + step.y
if (((nextpos.x == loop or nextpos.x == col - loop + 1) and step.y == 0) or
((nextpos.y == loop or nextpos.y == row - loop + 1) and step.x == 0)) then --Hit a corner in the loop
local tempstep = {x = step.x, y = step.y}
step.x = clockwise and tempstep.y or -tempstep.y
step.y = clockwise and -tempstep.x or tempstep.x
-- retract next step with new step
nextpos.x = curpos.x + step.x
nextpos.y = curpos.y + step.y
end
return curpos, nextpos
end
end
local IteratePos = IteratePosImpl() -- make an instance
local curpos, nextpos = IteratePos()
while (true) do
if(nextpos.x == startpos.x and nextpos.y == startpos.y) then
coroutine.yield(curpos)
SpiralGen(loop+1) -- Go one step inner, since we're done with this loop
break -- done with inner loop, get out
else
if(curpos.x < loop + 1 or curpos.x > col - loop or curpos.y < loop + 1 or curpos.y > row - loop) then
break -- done with all elemnts, no place to loop further, break out of recursion
else
local curposL = {x = curpos.x, y = curpos.y}
curpos, nextpos = IteratePos()
coroutine.yield(curposL)
end
end
end
end
local Spiral = function(rowP, colP, clockwiseP)
row = rowP
col = colP
clockwise = clockwiseP
return coroutine.wrap(function() SpiralGen(0) end) -- make a coroutine that returns all the values as an iterator
end
--test
for pos in Spiral(10,2,true) do
print (pos.y, pos.x)
end
for pos in Spiral(10,9,false) do
print (pos.y, pos.x)
end
答案 11 :(得分:1)
我有一个开源库 pixelscan ,这是一个python库,它提供了以各种空间模式扫描网格上像素的函数。包括的空间模式是圆形,环形,网格,蛇形和随机游走。还存在各种变换(例如,剪辑,交换,旋转,翻译)。最初的OP问题可以解决如下
for x, y in clip(swap(ringscan(0, 0, 0, 2)), miny=-1, maxy=1):
print x, y
产生分数
(0,0) (1,0) (1,1) (0,1) (-1,1) (-1,0) (-1,-1) (0,-1) (1,-1) (2,0) (2,1) (-2,1) (-2,0)
(-2,-1) (2,-1)
可以链接库生成器和转换以更改各种顺序和空间模式中的点。
答案 12 :(得分:1)
这是解决此问题的JavaScript(ES6)迭代解决方案:
let spiralMatrix = (x, y, step, count) => {
let distance = 0;
let range = 1;
let direction = 'up';
for ( let i = 0; i < count; i++ ) {
console.log('x: '+x+', y: '+y);
distance++;
switch ( direction ) {
case 'up':
y += step;
if ( distance >= range ) {
direction = 'right';
distance = 0;
}
break;
case 'right':
x += step;
if ( distance >= range ) {
direction = 'bottom';
distance = 0;
range += 1;
}
break;
case 'bottom':
y -= step;
if ( distance >= range ) {
direction = 'left';
distance = 0;
}
break;
case 'left':
x -= step;
if ( distance >= range ) {
direction = 'up';
distance = 0;
range += 1;
}
break;
default:
break;
}
}
}
以下是如何使用它:
spiralMatrix(0, 0, 1, 100);
这将创建一个向外螺旋,从坐标(x = 0,y = 0)开始,步长为1,项目总数等于100.执行总是按以下顺序开始移动 - 向上,向右,下,左。
请注意,此实现会创建方形矩阵。
答案 13 :(得分:1)
这是朱莉娅的答案:我的方法是在原点(0,0)
周围分配同心正方形(&#39;螺旋&#39;),其中每个正方形的边长{{} 1}},生成一个有序字典,其中包含位置编号(从原点1开始)作为键,相应的坐标作为值。
由于每个螺旋的最大位置为m = 2n + 1
,因此可以通过从此点向后工作,即从右下角按(n,-n)
个单位向后找到其余点,然后重复m-1
单位的垂直3段。
此过程在下面以相反的顺序写入,对应于螺旋的进行而不是反向计数过程,即m-1
[右上升]段减去ra
,然后{{1 3(m+1)
的[左上升],依此类推 - 希望这是不言自明的。
la
因此,对于您的第一个示例,将2(m+1)
插入等式中以找到n给出import DataStructures: OrderedDict, merge
function spiral(loc::Int)
s = sqrt(loc-1) |> floor |> Int
if s % 2 == 0
s -= 1
end
s = (s+1)/2 |> Int
return s
end
function perimeter(n::Int)
n > 0 || return OrderedDict([1,[0,0]])
m = 2n + 1 # width/height of the spiral [square] indexed by n
# loc_max = m^2
# loc_min = (2n-1)^2 + 1
ra = [[m^2-(y+3m-3), [n,n-y]] for y in (m-2):-1:0]
la = [[m^2-(y+2m-2), [y-n,n]] for y in (m-2):-1:0]
ld = [[m^2-(y+m-1), [-n,y-n]] for y in (m-2):-1:0]
rd = [[m^2-y, [n-y,-n]] for y in (m-2):-1:0]
return OrderedDict(vcat(ra,la,ld,rd))
end
function walk(n)
cds = OrderedDict(1 => [0,0])
n > 0 || return cds
for i in 1:n
cds = merge(cds, perimeter(i))
end
return cds
end
,m = 3
给出一个有序的位置字典到坐标,您可以将其转换为通过访问字典n = (5-1)/2 = 2
字段来确定坐标数组:
walk(2)
注意某些功能[例如vals
]最好将坐标保留在数组中而不是walk(2)
DataStructures.OrderedDict{Any,Any} with 25 entries:
1 => [0,0]
2 => [1,0]
3 => [1,1]
4 => [0,1]
⋮ => ⋮
[(co[1],co[2]) for co in walk(2).vals]
25-element Array{Tuple{Int64,Int64},1}:
(0,0)
(1,0)
⋮
(1,-2)
(2,-2)
,但在这里我将它们更改为元组 - norm
- 根据请求,使用列表推导。
&#34;支持&#34;的背景未指定非方形矩阵(请注意,此解决方案仍会计算离网值),但如果您希望仅Tuple{Int,Int}
过滤到范围(x,y)
(此处为{ {1}},x
)计算完全螺旋后,y
此矩阵与x=5
的值进行对比。
y=3
答案 14 :(得分:1)
这是Python 3中用于以顺时针和逆时针方向螺旋打印连续整数的解决方案。
import math
def sp(n): # spiral clockwise
a=[[0 for x in range(n)] for y in range(n)]
last=1
for k in range(n//2+1):
for j in range(k,n-k):
a[k][j]=last
last+=1
for i in range(k+1,n-k):
a[i][j]=last
last+=1
for j in range(n-k-2,k-1,-1):
a[i][j]=last
last+=1
for i in range(n-k-2,k,-1):
a[i][j]=last
last+=1
s=int(math.log(n*n,10))+2 # compute size of cell for printing
form="{:"+str(s)+"}"
for i in range(n):
for j in range(n):
print(form.format(a[i][j]),end="")
print("")
sp(3)
# 1 2 3
# 8 9 4
# 7 6 5
sp(4)
# 1 2 3 4
# 12 13 14 5
# 11 16 15 6
# 10 9 8 7
def sp_cc(n): # counterclockwise
a=[[0 for x in range(n)] for y in range(n)]
last=1
for k in range(n//2+1):
for j in range(n-k-1,k-1,-1):
a[n-k-1][j]=last
last+=1
for i in range(n-k-2,k-1,-1):
a[i][j]=last
last+=1
for j in range(k+1,n-k):
a[i][j]=last
last+=1
for i in range(k+1,n-k-1):
a[i][j]=last
last+=1
s=int(math.log(n*n,10))+2 # compute size of cell for printing
form="{:"+str(s)+"}"
for i in range(n):
for j in range(n):
print(form.format(a[i][j]),end="")
print("")
sp_cc(5)
# 9 10 11 12 13
# 8 21 22 23 14
# 7 20 25 24 15
# 6 19 18 17 16
# 5 4 3 2 1
<强>解释强>
螺旋由同心正方形组成,例如5x5正方形旋转,如下所示:
5x5 3x3 1x1
>>>>>
^ v >>>
^ v + ^ v + >
^ v <<<
<<<<v
(>>>>>
表示&#34;右转5次&#34;或者将列索引增加5次,v
表示减少或增加行索引等。)
所有方块都与它们的大小相同,我绕过同心方块。
对于每个方块,代码有四个循环(每侧一个),在每个循环中我们增加或减少列或行索引。
如果i
是行索引而j
是列索引,则可以通过以下方式构造5x5平方:
- 将j
从0增加到4(5次)
- 将i
从1增加到4(4次)
- 将j
从3递减到0(4次)
- 将i
从3减少到1(3次)
对于下一个方格(3x3和1x1),我们做同样的事情,但适当地改变初始和最终指数。
我为每个同心正方形使用了一个索引k
,有n // 2 + 1个同心正方形。
最后,一些数学用于漂亮印刷。
打印索引:
def spi_cc(n): # counter-clockwise
a=[[0 for x in range(n)] for y in range(n)]
ind=[]
last=n*n
for k in range(n//2+1):
for j in range(n-k-1,k-1,-1):
ind.append((n-k-1,j))
for i in range(n-k-2,k-1,-1):
ind.append((i,j))
for j in range(k+1,n-k):
ind.append((i,j))
for i in range(k+1,n-k-1):
ind.append((i,j))
print(ind)
spi_cc(5)
答案 15 :(得分:1)
这是c#,linq'ish。
public static class SpiralCoords
{
public static IEnumerable<Tuple<int, int>> GenerateOutTo(int radius)
{
//TODO trap negative radius. 0 is ok.
foreach(int r in Enumerable.Range(0, radius + 1))
{
foreach(Tuple<int, int> coord in GenerateRing(r))
{
yield return coord;
}
}
}
public static IEnumerable<Tuple<int, int>> GenerateRing(int radius)
{
//TODO trap negative radius. 0 is ok.
Tuple<int, int> currentPoint = Tuple.Create(radius, 0);
yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
//move up while we can
while (currentPoint.Item2 < radius)
{
currentPoint.Item2 += 1;
yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
}
//move left while we can
while (-radius < currentPoint.Item1)
{
currentPoint.Item1 -=1;
yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
}
//move down while we can
while (-radius < currentPoint.Item2)
{
currentPoint.Item2 -= 1;
yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
}
//move right while we can
while (currentPoint.Item1 < radius)
{
currentPoint.Item1 +=1;
yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
}
//move up while we can
while (currentPoint.Item2 < -1)
{
currentPoint.Item2 += 1;
yield return Tuple.Create(currentPoint.Item1, currentPoint.Item2);
}
}
}
问题的第一个例子(3x3)将是:
var coords = SpiralCoords.GenerateOutTo(1);
问题的第二个例子(5x3)将是:
var coords = SpiralCoords.GenerateOutTo(2).Where(x => abs(x.Item2) < 2);
答案 16 :(得分:1)
这是在C.
我偶然选择了错误的变量名称。在名称T == top,L == left,B == bottom,R == right。所以,tli是左上角我和brj是右下角j。
#include<stdio.h>
typedef enum {
TLTOR = 0,
RTTOB,
BRTOL,
LBTOT
} Direction;
int main() {
int arr[][3] = {{1,2,3},{4,5,6}, {7,8,9}, {10,11,12}};
int tli = 0, tlj = 0, bri = 3, brj = 2;
int i;
Direction d = TLTOR;
while (tli < bri || tlj < brj) {
switch (d) {
case TLTOR:
for (i = tlj; i <= brj; i++) {
printf("%d ", arr[tli][i]);
}
tli ++;
d = RTTOB;
break;
case RTTOB:
for (i = tli; i <= bri; i++) {
printf("%d ", arr[i][brj]);
}
brj --;
d = BRTOL;
break;
case BRTOL:
for (i = brj; i >= tlj; i--) {
printf("%d ", arr[bri][i]);
}
bri --;
d = LBTOT;
break;
case LBTOT:
for (i = bri; i >= tli; i--) {
printf("%d ", arr[i][tlj]);
}
tlj ++;
d = TLTOR;
break;
}
}
if (tli == bri == tlj == brj) {
printf("%d\n", arr[tli][tlj]);
}
}
答案 17 :(得分:0)
这是我在c#中使用方形螺旋的方法,我刚才做了这个,我以为我可以添加它,因为它与其他所有不同,不是最好的,但只是一种不同的方式,我肯定它也适用于非正方形。
这种方法我采用最大步数,而不是最大矢量。
这种方法的主要内容是角落,第一步有一些调整,而右下角的“角落”需要“进度”步骤。
private void Spiral(int sequence)
{
const int x = 0;
const int y = 1;
int[,] matrix = new int[2, sequence];
int dirX, dirY, prevX, prevY, curr;
dirX = dirY = prevX = prevY = curr = default(int);
do
{
if (curr > 0)
{
prevX = matrix[x, curr - 1];
prevY = matrix[y, curr - 1];
}
//Change direction based on the corner.
if (Math.Abs(prevX) == Math.Abs(prevY) && curr > 0)
{
dirX = dirY = 0;
if (prevY > 0 && prevX > 0)
dirX = -1;
else if (prevY > 0 && prevX < 0)
dirY = -1;
else if (prevY < 0 && prevX < 0)
dirX = 1;
else if (prevY < 0 && prevX > 0) //Move forward
dirX = 1;
else if (prevY == 0 && prevX == 0) //For the first step.
dirX = 1;
}
else if (prevY < 0 && prevX > 0 && (Math.Abs(matrix[x, curr - 2]) == Math.Abs(matrix[y, curr - 2]))) //Move forward
{
dirX = 0;
dirY = 1;
}
else if (prevX == 1 && prevY == 0) //For the second step.
{
dirY = 1;
dirX = 0;
}
matrix[x, curr] = prevX + dirX;
matrix[y, curr] = prevY + dirY;
System.Console.Write($"({matrix[x, curr]},{matrix[y, curr]}) ");
} while (++curr < sequence);
}
答案 18 :(得分:0)
Kotlin
螺旋。
data class Point(val x: Int, val y: Int) {
operator fun plus(p: Point): Point = Point(x + p.x, y + p.y)
override fun toString() = "($x, $y)"
companion object {
enum class Directions(val d: Point) {
RIGHT(Point(1, 0)),
UP(Point(0, 1)),
LEFT(Point(-1, 0)),
DOWN(Point(0, -1))
}
fun spiral() = sequence {
var p = Point(0, 0)
// Always start at the origin.
yield(p)
// 0, 2, 4, 6 ...
generateSequence(0) { it + 2 }.forEach { n ->
// For each of the 4 directions
Directions.values().forEach { d ->
// actual length depends slightly on direction
val l = n + when (d) {
Directions.RIGHT, Directions.UP -> 1
Directions.LEFT, Directions.DOWN -> 2
}
// run to the next corner
for (i in 1..l) {
p += d.d
yield(p)
}
}
}
}
}
}
答案 19 :(得分:0)
Davidont在VB.Net中的出色解决方案
Public Function Spiral(n As Integer) As RowCol
' given n an index in the squared spiral
' p the sum of point in inner square
' a the position on the current square
' n = p + a
' starts with row 0 col -1
Dim r As Integer = CInt(Math.Floor((Math.Sqrt(n + 1) - 1) / 2) + 1)
' compute radius : inverse arithmetic sum of 8+16+24+...=
Dim p As Integer = (8 * r * (r - 1)) \ 2
' compute total point on radius -1 : arithmetic sum of 8+16+24+...
Dim en As Integer = r * 2
' points by face
Dim a As Integer = (1 + n - p) Mod (r * 8)
' compute the position and shift it so the first is (-r,-r) but (-r+1,-r)
' so square can connect
Dim row As Integer
Dim col As Integer
Select Case Math.Floor(a \ (r * 2))
' find the face : 0 top, 1 right, 2, bottom, 3 left
Case 0
row = a - r
col = -r
Case 1
row = r
col = (a Mod en) - r
Case 2
row = r - (a Mod en)
col = r
Case 3
row = -r
col = r - (a Mod en)
End Select
Return New RowCol(row, col)
End Function
答案 20 :(得分:0)
这是一个Python / numpy解决方案,可以用螺旋形填充任何矩形。它解决的问题与原始问题略有不同,但这就是我所需要的。
import numpy as np
import matplotlib.pyplot as plt
def spiral(m, n):
M = np.zeros([m, n], dtype=int)
i, j = 0, 0 # location of "turtle"
di, dj = 0, 1 # direction of movement
h = (np.min([m,n]))/2
for ii in range(m * n):
M[i, j] = ii
if (i < h and (i == j+1 or i+1 == n-j)) or (i >= m-h and (m-i == n-j or m-i == j+1)):
di, dj = dj, -di # turn clockwise
i, j = i + di, j + dj
return M
plt.imshow(spiral(16, 24))
答案 21 :(得分:0)
您的问题看起来像一个称为螺旋记忆的问题。 在这个问题中,网格上的每个正方形都是从位于原点的数字1开始以螺旋形方式分配的。然后在向外盘旋的同时向上计数。例如:
17 16 15 14 13
18 5 4 3 12
19 6 1 2 11
20 7 8 9 10
21 22 23 ---->
我按照这种螺旋模式计算每个数字的坐标的解决方案如下:
def spiral_pattern(num):
x = y = 0
for _ in range(num-1):
x, y = find_next(x, y)
yield (x, y)
def find_next(x, y):
"""find the coordinates of the next number"""
if x == 0 and y == 0:
return 1, 0
if abs(x) == abs(y):
if x > 0 and y > 0:
x, y = left(x, y)
elif x < 0 and y > 0:
x, y = down(x, y)
elif x < 0 and y < 0:
x, y = right(x, y)
elif x > 0 and y < 0:
x, y = x+1, y
else:
if x > y and abs(x) > abs(y):
x, y = up(x, y)
elif x < y and abs(x) < abs(y):
x, y = left(x, y)
elif x < y and abs(x) > abs(y):
x, y = down(x, y)
elif x > y and abs(x) < abs(y):
x, y = right(x, y)
return x, y
def up(x, y):
return x, y+1
def down(x, y):
return x, y-1
def left(x, y):
return x-1, y
def right(x, y):
return x+1, y
答案 22 :(得分:0)
Python使用Can Berk Güder answer循环顺时针螺旋代码。
final Button acceptButton = (Button)myInflatedView.findViewById(R.id.button_accept);
答案 23 :(得分:0)
我正在分享这个我为不同目的而设计的代码;它是关于找到列号&#34; X&#34;和行号&#34; Y&#34;数组元素@ spiral index&#34; index&#34;。此功能采用宽度&#34; w&#34;和身高&#34; h&#34;矩阵和所需的&#34;索引&#34;。当然,此功能可用于产生相同的所需输出。我认为这是最快的方法(因为它跳过单元而不是扫描它们)。
rec BuildSpiralIndex(long w, long h, long index = -1)
{
long count = 0 , x = -1, y = -1, dir = 1, phase=0, pos = 0, length = 0, totallength = 0;
bool isVertical = false;
if(index>=(w*h)) return null;
do
{
isVertical = (count % 2) != 0;
length = (isVertical ? h : w) - count/2 - count%2 ;
totallength += length;
count++;
} while(totallength<index);
count--; w--; h--;
phase = (count / 4); pos = (count%4);
x = (pos > 1 ? phase : w - phase);
y = ((pos == 1 || pos == 2) ? h - phase : phase) + (1 * (pos == 3 ? 1 : 0));
dir = pos > 1 ? -1 : 1;
if (isVertical) y -= (totallength - index - 1) * dir;
else x -= (totallength - index -1) * dir;
return new rec { X = x, Y = y };
}
答案 24 :(得分:0)
C#版本,也处理非方形尺寸。
private static Point[] TraverseSpiral(int width, int height) {
int numElements = width * height + 1;
Point[] points = new Point[numElements];
int x = 0;
int y = 0;
int dx = 1;
int dy = 0;
int xLimit = width - 0;
int yLimit = height - 1;
int counter = 0;
int currentLength = 1;
while (counter < numElements) {
points[counter] = new Point(x, y);
x += dx;
y += dy;
currentLength++;
if (dx > 0) {
if (currentLength >= xLimit) {
dx = 0;
dy = 1;
xLimit--;
currentLength = 0;
}
} else if (dy > 0) {
if (currentLength >= yLimit) {
dx = -1;
dy = 0;
yLimit--;
currentLength = 0;
}
} else if (dx < 0) {
if (currentLength >= xLimit) {
dx = 0;
dy = -1;
xLimit--;
currentLength = 0;
}
} else if (dy < 0) {
if (currentLength >= yLimit) {
dx = 1;
dy = 0;
yLimit--;
currentLength = 0;
}
}
counter++;
}
Array.Reverse(points);
return points;
}
答案 25 :(得分:0)
只是为了Javascript的乐趣:
function spiral(x, y) {
var iy = ix = 0
, hr = (x - 1) / 2
, vr = (y - 1) / 2
, tt = x * y
, matrix = []
, step = 1
, dx = 1
, dy = 0;
while(matrix.length < tt) {
if((ix <= hr && ix >= (hr * -1)) && (iy <= vr && (iy >= (vr * -1)))) {
console.log(ix, iy);
matrix.push([ix, iy]);
}
ix += dx;
iy += dy;
// check direction
if(dx !== 0) {
// increase step
if(ix === step && iy === (step * -1)) step++;
// horizontal range reached
if(ix === step || (ix === step * -1)) {
dy = (ix === iy)? (dx * -1) : dx;
dx = 0;
}
} else {
// vertical range reached
if(iy === step || (iy === step * -1)) {
dx = (ix === iy)? (dy * -1) : dy;
dy = 0;
}
}
}
return matrix;
}
var sp = spiral(5, 3);
答案 26 :(得分:0)
我和朋友一起制作了这个,在Javascript上将螺旋调整为画布宽高比。我得到的最佳解决方案是逐像素进行图像演变,填充整个图像。
希望它有所帮助。
var width = 150;
var height = 50;
var x = -(width - height)/2;
var y = 0;
var dx = 1;
var dy = 0;
var x_limit = (width - height)/2;
var y_limit = 0;
var counter = 0;
var canvas = document.getElementById("canvas");
var ctx = canvas.getContext('2d');
setInterval(function(){
if ((-width/2 < x && x <= width/2) && (-height/2 < y && y <= height/2)) {
console.log("[ " + x + " , " + y + " ]");
ctx.fillStyle = "#FF0000";
ctx.fillRect(width/2 + x, height/2 - y,1,1);
}
if( dx > 0 ){//Dir right
if(x > x_limit){
dx = 0;
dy = 1;
}
}
else if( dy > 0 ){ //Dir up
if(y > y_limit){
dx = -1;
dy = 0;
}
}
else if(dx < 0){ //Dir left
if(x < (-1 * x_limit)){
dx = 0;
dy = -1;
}
}
else if(dy < 0) { //Dir down
if(y < (-1 * y_limit)){
dx = 1;
dy = 0;
x_limit += 1;
y_limit += 1;
}
}
counter += 1;
//alert (counter);
x += dx;
y += dy;
}, 1);
您可以看到http://jsfiddle.net/hitbyatruck/c4Kd6/正在使用它。只需确保更改javascript变量上画布的宽度和高度以及HTML上的属性。
答案 27 :(得分:0)
// PHP实现
function spiral($n) {
$r = intval((sqrt($n + 1) - 1) / 2) + 1;
// compute radius : inverse arithmetic sum of 8+16+24+...=
$p = (8 * $r * ($r - 1)) / 2;
// compute total point on radius -1 : arithmetic sum of 8+16+24+...
$en = $r * 2;
// points by face
$a = (1 + $n - $p) % ($r * 8);
// compute de position and shift it so the first is (-r,-r) but (-r+1,-r)
// so square can connect
$pos = array(0, 0, $r);
switch (intval($a / ($r * 2))) {
// find the face : 0 top, 1 right, 2, bottom, 3 left
case 0:
$pos[0] = $a - $r;
$pos[1] = -$r;
break;
case 1:
$pos[0] = $r;
$pos[1] = ($a % $en) - $r;
break;
case 2:
$pos[0] = $r - ($a % $en);
$pos[1] = $r;
break;
case 3:
$pos[0] = -$r;
$pos[1] = $r - ($a % $en);
break;
}
return $pos;
}
for ($i = 0; $i < 168; $i++) {
echo '<pre>';
print_r(spiral($i));
echo '</pre>';
}
答案 28 :(得分:0)
我最近遇到过类似的挑战,我必须创建一个2D数组并使用螺旋矩阵算法对结果进行排序和打印。此C#代码将使用N,N 2D阵列。为了清晰起见,它很冗长,可能会重新考虑以满足您的需求。
//CREATE A NEW MATRIX OF SIZE 4 ROWS BY 4 COLUMNS - SCALE MATRIX SIZE HERE
SpiralMatrix SM = new SpiralMatrix(4, 4);
string myData = SM.Read();
public class SpiralMatrix
{
//LETS BUILD A NEW MATRIX EVERY TIME WE INSTANTIATE OUR CLASS
public SpiralMatrix(int Rows, int Cols)
{
Matrix = new String[Rows, Cols];
int pos = 1;
for(int r = 0; r<Rows; r++){
for (int c = 0; c < Cols; c++)
{
//POPULATE THE MATRIX WITH THE CORRECT ROW,COL COORDINATE
Matrix[r, c] = pos.ToString();
pos++;
}
}
}
//READ MATRIX
public string Read()
{
int Row = 0;
int Col = 0;
string S = "";
bool isDone = false;
//CHECK tO SEE IF POSITION ZERO IS AVAILABLE
if(PosAvailable(Row, Col)){
S = ConsumePos(Row, Col);
}
//START READING SPIRAL
//THIS BLOCK READS A FULL CYCLE OF RIGHT,DOWN,LEFT,UP EVERY ITERATION
while(!isDone)
{
bool goNext = false;
//READ ALL RIGHT SPACES ON THIS PATH PROGRESSION
while (PosAvailable(Row, Col+1))
{
//Is ReadRight Avail
Col++;
S += ConsumePos(Row, Col);
goNext = true;
}
//READ ALL DOWN SPACES ON THIS PATH PROGRESSION
while(PosAvailable(Row+1, Col)){
//Is ReadDown Avail
Row++;
S += ConsumePos(Row, Col);
goNext = true;
}
//READ ALL LEFT SPACES ON THIS PATH PROGRESSION
while(PosAvailable(Row, Col-1)){
//Is ReadLeft Avail
Col--;
S += ConsumePos(Row, Col);
goNext = true;
}
//READ ALL UP SPACES ON THIS PATH PROGRESSION
while(PosAvailable(Row-1, Col)){
//Is ReadUp Avail
Row--;
S += ConsumePos(Row, Col);
goNext = true;
}
if(!goNext){
//DONE - SET EXIT LOOP FLAG
isDone = true;
}
}
return S;
}
//DETERMINE IF THE POSITION IS AVAILABLE
public bool PosAvailable(int Row, int Col)
{
//MAKE SURE WE ARE WITHIN THE BOUNDS OF THE ARRAY
if (Row < Matrix.GetLength(0) && Row >= 0
&& Col < Matrix.GetLength(1) && Col >= 0)
{
//CHECK COORDINATE VALUE
if (Matrix[Row, Col] != ConsumeChar)
return true;
else
return false;
}
else
{
//WE ARE OUT OF BOUNDS
return false;
}
}
public string ConsumePos(int Row, int Col)
{
string n = Matrix[Row, Col];
Matrix[Row, Col] = ConsumeChar;
return n;
}
public string ConsumeChar = "X";
public string[,] Matrix;
}
答案 29 :(得分:0)
AutoIt的解决方案
#include <Math.au3>
#include <Array.au3>
Func SpiralSearch($xMax,$yMax)
$x = 0
$y = 0
$dx = 0
$dy = -1
for $i=0 To _max($xMax, $yMax)^2-1 Step 1
if -$xMax/2 < $x and $x <= $xMax/2 And -$yMax/2 < $y And $y <= $yMax/2 Then
MsgBox(0, "We are here ", $x & " " & $y)
EndIf
if $x == $y or ($x < 0 and $x == -$y) or ($x > 0 and $x == 1-$y) Then
_ArraySwap ($dx, $dy)
$dx=-$dx
EndIf
$x += $dx
$y += $dy
Next
EndFunc
答案 30 :(得分:0)
这是我非常糟糕的解决方案,它基于Java的最低限度知识。在这里,我必须将单位放在一个螺旋形的场地上。单位不能放在其他单位之上,也不能放在山上或海洋中。
要清楚。这不是一个好的解决方案。这是一个非常糟糕的解决方案,增加了其他人的乐趣,可以嘲笑它有多糟糕
private void unitPlacementAlgorithm(Position p, Unit u){
int i = p.getRow();
int j = p.getColumn();
int iCounter = 1;
int jCounter = 0;
if (getUnitAt(p) == null) {
unitMap.put(p, u);
} else {
iWhileLoop(i, j, iCounter, jCounter, -1, u);
}
}
private void iWhileLoop(int i, int j, int iCounter, int jCounter, int fortegn, Unit u){
if(iCounter == 3) {
for(int k = 0; k < 3; k++) {
if(k == 2) { //This was added to make the looping stop after 9 units
System.out.println("There is no more room around the city");
return;
}
i--;
if (getUnitAt(new Position(i, j)) == null
&& !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS))
&& !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
unitMap.put(new Position(i, j), u);
return;
}
iCounter--;
}
}
while (iCounter > 0) {
if (fortegn > 0) {
i++;
} else {
i--;
}
if (getUnitAt(new Position(i, j)) == null
&& !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS))
&& !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
unitMap.put(new Position(i, j), u);
return;
}
iCounter--;
jCounter++;
}
fortegn *= -1;
jWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}
private void jWhileLoop(int i, int j, int iCounter, int jCounter,
int fortegn, Unit u) {
while (jCounter > 0) {
if (fortegn > 0) {
j++;
} else {
j--;
}
if (getUnitAt(new Position(i, j)) == null
&& !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.OCEANS))
&& !(getTileAt(new Position(i, j)).getTypeString().equals(GameConstants.MOUNTAINS))) {
unitMap.put(new Position(i, j), u);
return;
}
jCounter--;
iCounter++;
if (jCounter == 0) {
iCounter++;
}
}
iWhileLoop(i, j, iCounter, jCounter, fortegn, u);
}
向任何能够真正阅读此内容的人致敬
加分问题:这个“算法”的运行时间是多少? :P 强>
答案 31 :(得分:0)
Here is my attempt for simple C solution. First print the outer spiral and move one block inside..and repeat.
#define ROWS 5
#define COLS 5
//int A[ROWS][COLS] = { {1, 2, 3, 4}, {5, 6, 7, 8}, {11, 12, 13, 14}, {15, 16, 17, 18} };
//int A[ROWS][COLS] = { {1, 2, 3}, {6, 7, 8}, { 12, 13, 14} };
//int A[ROWS][COLS] = { {1, 2}, {3, 4}};
int A[ROWS][COLS] = { {1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15} , {16, 17, 18, 19, 20}, {21, 22, 23, 24, 25} };
void print_spiral(int rows, int cols)
{
int row = 0;
int offset = 0;
while (offset < (ROWS - 1)) {
/* print one outer loop at a time. */
for (int col = offset; col <= cols; col++) {
printf("%d ", A[offset][col]);
}
for (row = offset + 1; row <= rows; row++) {
printf("%d ", A[row][cols]);
}
for (int col = cols - 1; col >= offset; col--) {
printf("%d ", A[rows][col]);
}
for (row = rows - 1; row >= offset + 1; row--) {
printf("%d ", A[row][offset]);
}
/* Move one block inside */
offset++;
rows--;
cols--;
}
printf("\n");
}
int _tmain(int argc, _TCHAR* argv[])
{
print_spiral(ROWS-1, COLS-1);
return 0;
}
答案 32 :(得分:0)
这是基于您自己的解决方案,但我们可以更聪明地找到角落。如果M和N非常不同,这样可以更容易地看到如何跳过外面的区域。
def spiral(X, Y):
x = y = 0
dx = 0
dy = -1
s=0
ds=2
for i in range(max(X, Y)**2):
if abs(x) <= X and abs(y) <= Y/2:
print (x, y)
# DO STUFF...
if i==s:
dx, dy = -dy, dx
s, ds = s+ds/2, ds+1
x, y = x+dx, y+dy
和基于发电机的解决方案优于O(max(n,m)^ 2),它是O(nm + abs(nm)^ 2),因为如果它们不是解决方案的一部分,它会跳过整个条带
def spiral(X,Y):
X = X+1>>1
Y = Y+1>>1
x = y = 0
d = side = 1
while x<X or y<Y:
if abs(y)<Y:
for x in range(x, x+side, d):
if abs(x)<X: yield x,y
x += d
else:
x += side
if abs(x)<X:
for y in range(y, y+side, d):
if abs(y)<Y: yield x,y
y += d
else:
y += side
d =-d
side = d-side
答案 33 :(得分:-1)
我非常喜欢这篇文章的1+挑战。我通过 Ruby 代码
尝试了这一点3X3 方阵
(0..8).each do |i|
j = Math.sqrt(i).round
k = (j ** 2 - i).abs - j
p = [k, -k].map {|l| (l + j ** 2 - i - (j % 2)) * 0.5 * (-1) ** j}.map(&:to_i)
puts "(#{p[0]}, #{p[1]}) "
end
<强>输出:强>
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1)
对于 5X3 ,如图中所述
iter = (0..19).to_enum
while true
i = iter.next
j = Math.sqrt(i).round
k = (j ** 2 - i).abs - j
p = [k, -k].map {|l| (l + j ** 2 - i - (j % 2)) * 0.5 * (-1) ** j}.map(&:to_i)
print "(#{p[0]}, #{p[1]}) "
if i == 11
5.times {i = iter.next}
end
end
输出:
(0, 0) (1, 0) (1, 1) (0, 1) (-1, 1) (-1, 0) (-1, -1) (0, -1) (1, -1) (2, -1) (2, 0) (2, 1) (-2, 1) (-2, 0) (-2, -1)