有可能在变量范围内取消设置reuse
吗?
我尝试了以下命令:
In [1]: import tensorflow as tf
In [2]: tf.get_variable_scope().reuse
Out[2]: False
In [3]: tf.get_variable_scope().reuse_variables
Out[3]: <bound method VariableScope.reuse_variables of <tensorflow.python.ops.variable_scope.VariableScope object at 0x7fd9cc46c4d0>>
In [4]: tf.get_variable_scope().reuse_variables()
In [5]: tf.get_variable_scope().reuse
Out[5]: True
In [6]: tf.get_variable_scope().reuse_variables()
In [7]: tf.get_variable_scope().reuse
Out[7]: True
In [8]: tf.get_variable_scope().reuse_variables(False)
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-8-ba19ed12625c> in <module>()
----> 1 tf.get_variable_scope().reuse_variables(False)
TypeError: reuse_variables() takes exactly 1 argument (2 given)
In [9]: tf.get_variable_scope().reuse = False
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-9-ddd0b37e4f0e> in <module>()
----> 1 tf.get_variable_scope().reuse = False
AttributeError: can't set attribute
In [10]: tf.get_variable_scope().reuse_variables = False
In [11]: tf.get_variable_scope().reuse_variables()
---------------------------------------------------------------------------
TypeError Traceback (most recent call last)
<ipython-input-11-d03dc0fb25b6> in <module>()
----> 1 tf.get_variable_scope().reuse_variables()
TypeError: 'bool' object is not callable
正如您所看到的,我无法通过多次调用reuse
取消reuse_variables
,我无法使用=
运算符进行设置,并且出于某种原因我可以设置无论我想要什么,而不是reuse_variables
函数(这是一个错误?)。
答案 0 :(得分:3)
一旦你进入了一个范围,我认为这是设计上的,你不能改变重用状态,直到再次重新打开范围,并以另一种方式设置标志:
with tf.variable_scope("scope"):
a = tf.get_variable("var_a", 1)
print(a.name)
with tf.variable_scope("scope", reuse = True):
b = tf.get_variable("var_a")
print b.name
#c = tf.get_variable("var_b") # won't work
# can't reuse something that doesn't exist
# probably enforced so you don't make unintended variables
with tf.variable_scope("scope"): #reuse False
#c = tf.get_variable("var_a") # won't work
# there is another variable with the same name
# makes sure you don't override the previous variable
c = tf.get_variable("var_b",2)
print c.name
你可以用这种方式破解它:
with tf.variable_scope("scope") as scope:
a = tf.get_variable("var_a", 1)
print(a.name)
with tf.variable_scope("scope", reuse = True):
b = tf.get_variable("var_a")
print b.name
with tf.variable_scope(scope):
c = tf.get_variable("var_b", 1)
print c.name
我想你可以这样做:
print(tf.get_variable_scope().reuse) #False
tf.get_variable_scope().reuse_variables()
print(tf.get_variable_scope().reuse) #True
with tf.variable_scope(tf.get_variable_scope(), reuse=False):
print(tf.get_variable_scope().reuse) #False