我试图使2个转换层共享相同的权重,但是,似乎API不起作用。
import tensorflow as tf
x = tf.random_normal(shape=[10, 32, 32, 3])
with tf.variable_scope('foo') as scope:
conv1 = tf.contrib.layers.conv2d(x, 3, [2, 2], padding='SAME', reuse=True, scope=scope)
print(conv1.name)
conv2 = tf.contrib.layers.conv2d(x, 3, [2, 2], padding='SAME', reuse=True, scope=scope)
print(conv2.name)
打印出来
foo/foo/Relu:0
foo/foo_1/Relu:0
从tf.contrib.layers.conv2d
更改为tf.layers.conv2d
并不能解决问题。
tf.layers.conv2d
:
import tensorflow as tf
x = tf.random_normal(shape=[10, 32, 32, 3])
conv1 = tf.layers.conv2d(x, 3, [2, 2], padding='SAME', reuse=None, name='conv')
print(conv1.name)
conv2 = tf.layers.conv2d(x, 3, [2, 2], padding='SAME', reuse=True, name='conv')
print(conv2.name)
给出
conv/BiasAdd:0
conv_2/BiasAdd:0
答案 0 :(得分:14)
在您编写的代码中,变量确实在两个卷积层之间重用。试试这个:
True
请注意,只创建了一个权重和一个偏差张量。即使它们共享权重,层也不共享实际计算。因此,您会看到操作的两个不同名称。